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Executive Summary

This report summarizes a joint effort between Argonne National Laboratory, Idaho National Laboratory, and
Los Alamos National Laboratory to develop and deploy constitutive models targeted at predicting the life
of Grade 91 alloy components subjected to high temperature environments typical of those that structural
components in advanced nuclear reactors would experience.
Two distinct, but complementary constitutive modeling approaches have been taken here. The first em-

ploys a phenomenological viscoplastic model for which parameters have been calibrated based on exper-
imental data for a wide range of Grade 91 alloy that has undergone a variety of processing. A Bayesian
approach was used to derive distributions of uncertain parameters for this model based on this data set.
The second approach is a reduced order model suitable for engineering-scale analysis that is based on

the results of a large set of mesoscale simulations. Mesoscale models allow for the microstructure and
composition of a particular alloy to be directly taken into account in the computation of the viscoplastic
response, but are computationally expensive, which makes it impractical to directly call those models for the
material constitutive response in an engineering-scale simulation. The reduced-order representation of the
response of the underlying model used here allows for an engineering-scale model to take into account the
characteristics of the underlying microstructure while only incurring a reasonable computational expense.
Both of these approaches have different strengths and are applicable for different parts of the design/anal-

ysis process. The phenomenological models can be readily parameterized based on a set of experimental
data for a given class of materials and used for scoping calculations. Once a specific material is chosen and
adequately characterized, the reduced order models can accurately predict the response of that specific alloy,
and because the models are based on predictive models of the underlying microstructure, they can be used to
more confidently predict the response under conditions in regions where there is limited experimental data.
Both of these models have been integrated in the Grizzly code, which is used here to perform proof-of-

concept uncertainty quantification analyses of a simple component under prototypical conditions. The built-
in stochastic analysis capabilities in the MOOSE framework that Grizzly is built on are used here to run large
sets of simulations for this uncertainty quantification analysis. As would be expected, because the reduced
order models are developed for a muchmore tightly defined alloy, they predict tighter distributions of the time
to failure than the phenomenological models, which are calibrated to a broader set of data. Also important
is that these simulations demonstrate that a reduced order modeling approach can be successfully deployed
to propagate uncertainties from the material scale to practical engineering-scale component simulations.
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1 INTRODUCTION

Multiple concepts are in development for advanced reactors that offer improved economics and safety relative
to the light water reactors (LWRs) that currently provide a major portion of the clean energy supplied to the
electrical grid in the United States. Most of these designs operate at higher temperatures than LWRs, which
places unique demands on their structural components.
There is an ongoing effort by the US Department of Energy Office of Nuclear Energy’s Modeling and

Simulation Program to develop simulation tools to predict the behavior of these advanced reactors, includ-
ing fuel performance, reactor physics, and thermal hydraulics. A viable reactor design must not only have
adequate safety and performance in these areas, but the structural components that contain the reactor must
also be able to adequately withstand the harsh environmental conditions of the reactor.
Efforts have been underway for several years to develop capabilities to simulate the aging of structural

components in the Grizzly code, which is developed at Idaho National Laboratory (INL). This development
originally focused on LWRs, but more recently has shifted to also address material issues in advanced re-
actors. Grizzly is based on INL’s MOOSE multiphysics simulation framework and uses the finite element
method in multiple dimensions to simulate both the progression of aging mechanisms and the effects of that
aging on nuclear power plant structures.
One of the major issues of concern for advanced reactor structural components is creep, which is a much

larger concern at the elevated temperatures for those applications than it is for LWR applications. To address
high-temperature creep in advanced reactor metals, two fundamentally different types of material constitutive
models have been integrated into Grizzly.
The first approach uses traditional phenomenological models, the parameters of which are calibrated to

match experimental observations of the response of a material of interest in a given regime. These models
are provided through the Nuclear Engineering material Model Library (NEML), which is an open-source
library of common classical material models that can be combined in a variety of ways. This library, devel-
oped at Argonne National Laboratory (ANL), can optionally be linked with Grizzly. These models have the
advantage that their behavior is generally well-understood because they have been in use by the engineering
community for a long time, and they can perform well if they are used in the regime for which they have been
calibrated. They are also relatively simple, so they offer good robustness and computational performance.
However, because the parameters that define their behavior are based on the observed response of the ma-
terial, rather than the underlying microstructure, they cannot readily be used to account for changes in the
microstructure, such as those that occur due to irradiation, and their use outside the regime for which they
were calibrated is also limited.
The second class of material models explored here are reduced order models (ROMs) that are derived from

mining a synthetic database of predicted mechanical response derived from the use of a crystal plasticity
based mechanistic constitutive model. The steps for ROM development include:

• Meso-scale polycrystal model is calibrated using the available limited experimental data
• Synthetic database of material response (e.g., creep behavior and the evolution of microstructure) is

developed for a wide range of design interest.
• ROM is developed from the database using orthogonal polynomial regressions.
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The visco-plastic self-consistent (VPSC) polycrystal plasticity model can be used to compute the response
of a representative volume of material under mechanical loading and account for the effects of microstruc-
tural features. Directly evaluating a mesoscale model at every material point in an engineering-scale model
is possible, but cost-prohibitive. To provide the benefits of a mesoscale-based model that is aware of mi-
crostructure, a mesoscale model is evaluated under a wide range of conditions of interest, and data analytics
are used to develop an ROM that represents the material response using functions that are readily evaluable
within an engineering constitutive model. A set of such models, known as LAROMANCE, for a growing
number of alloy types have been developed by Los Alamos National Laboratory (LANL).
The present report describes these two constitutive modeling approaches, and then demonstrates their

application in an engineering-scale analysis to Grade 91 alloy, one of the six alloys currently permitted
for high temperature nuclear applications by the ASME Boiler and Pressure Vessel Code. Ultimately, an
engineering analysis of a component in a high temperature environment will be concerned with predicting
the time until excessive creep or creep rupture occurs. Quantifying the uncertainty in this component lifetime
requires a significant number of engineering-scale calculations, which require robust, usable constitutive
models.
For the phenomenological NEML model, extensive work was performed to characterize the uncertainty

of the parameters for that model through the use of Bayesian statistics. For the microstructure-based LARO-
MANCE model, the uncertain parameters are based on the properties of the microstructure, rather than on
experimental observation of the material response. The components chosen for this study are relatively sim-
ple, as are the failure criteria. This study, which is a joint effort of three national laboratories (INL, ANL,
and LANL), is intended to be a proof of concept to demonstrate how uncertain parameters can be computed
and used for a phenomenological model, and how uncertainty in the underlying microstructure parameters
can be propagated to the engineering response in the case of the ROM.
This report begins by providing details of the phenomenological model for Grade 91 and the development

of the uncertain parameters for that model in Chapter 2. Next, it provides an overview of the ROM in
Chapter 3. Application of these models to engineering-scale uncertainty quantification analysis is described
in Chapter 4, followed by a summary and recommendations for future work in Chapter 5.
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2 DEVELOPMENT OF UNCERTAIN PARAMETERS
FOR PHENOMENOLOGICAL MODELS OF HIGH
TEMPERATURE CREEP RESPONSE

A better understanding of uncertainties in structural degradation of components operating at high temper-
atures could lead to better engineering design. Except for a few relatively recent studies (c.f. [1–3]) most
existing analysis involving a probabilistic approach for high temperature materials focus on crack growth
under the creep boundary conditions [4, 5]. Moreover, probabilistic methods are rarely used in the design of
high temperature components. Several factors limit the application of probabilistic methods to high temper-
ature components:

1. Limited experimental test data
2. Poorly-quantified loading conditions
3. Analysis methods that isolate single components from plant systems

However, applying statistical analysis to inelastic material behavior is likely the most significant obstacle.
In this chapter we describe an initial method for quantifying the uncertainties in high temperature inelastic

material response by formulating an empirical statistical model for both uniaxial and cyclic loading condi-
tions.
Parameter sets for deterministic inelastic models typically minimize the difference between model predic-

tion and experimental data, known as the inverse analysis [6]. There is extensive previous work focusing
on estimating inelastic constitutive model parameters deterministically, with studies ranging from simple
isotropic one-dimensional models to complex anisotropic microstructure-informed crystal plasticity models
with different optimization algorithms [7–18]. An important drawback of such deterministic approaches is
that they neglect the observed scatter in experimental data arising due to measurement noise or material
heat-to-heat property variations, which can only be addressed through statistical modeling [19].
This work considers a Bayesian inverse analysis of conventional, empirical material models. Bayesian

analysis results in the probability distributions of the material parameters of interest, called the posterior dis-
tributions, starting from an initial guess, termed the prior distributions. This methodology incorporates the
existing knowledge of the system through these prior distributions and updates the priors using the likelihood
function to finally generate the posterior distributions following the Bayes’ rule. Most often, the Bayesian
analysis uses the Markov Chain Monte Carlo (MCMC) algorithm for sampling points in the parameter space.
A few previous studies exist in literature incorporating Bayesian MCMCmethodology to identify parameters
for inelastic models, including [20–27]. However, none of these studies considers a complete high tempera-
ture constitutive model suitable for representing combined creep and plastic deformation.
This report applies the Bayesian MCMC algorithm to develop statistical models for the steady state and

cyclic behavior of Grade 91 steel at elevated temperatures. Previous works have been devoted to developing
and calibrating deterministic constitutive models to capture this behavior [15–17]. However, there is a wide
scatter in the experimental data arising both from material variability as well as differences in the experi-
mental conditions. A statistical model could capture the observed scatter in the experimental data through a
statistical distribution of the underlying model parameters.
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In this chapter we first apply the Bayesian MCMC on a simplified uniaxial inelastic model using tensile
and creep reference data. Subsequently, we incorporate strain controlled cyclic tests to generate a unified
statistical model including kinematic hardening parameters, but excluding cyclic damage.

2.1 Simulation details

This section describes the deterministic inelastic material models used to perform the statistical modeling,
as well as gives a brief overview of the Bayesian MCMC methodology.

2.1.1 Inelastic Material Model

The models considered here are viscoplastic:
�̇ = �̇e+ �̇vp (2.1)

with the elastic strain rate following Hooke’s law
�̇e = E�̇ (2.2)

where E is the Young’s modulus. This section considers two variants of a basic viscoplastic model: one
suitable only for monotonic loading but including the effect of creep damage on the evolution of the creep
rate and one suitable for high temperature cyclic plasticity, but excluding the development of creep-fatigue
damage.

Monotonic Model with Damage

We first test the Bayesian methodology on a simplified uniaxial elasto–viscoplastic damage model. For this
model the inelastic strain rate follows the Perzyna flow rule [28] with damage,

�̇vp =

⟨ �
1−!

−�0−R

�

⟩n

, (2.3)

where ! is the damage variable, and n,� and �0 are the viscoplastic parameters. The hardening internal
variable R follows a standard isotropic Voce hardening law, [29],

R =Q
[

1−exp
(

−b ||
|

�vp(t)
|

|

|

)]

(2.4)
where b and Q are the hardening parameters. The damage rate is the classical model by Leckie and Hay-
hurst [30],

!̇ =
( �
A

)�
(1−!)−� (2.5)

where A,� and � represents the adjustable damage parameters.

Inelastic Model for Cyclic Loading

We also test the applicability of the Bayesian approach when including more complex cyclic tests (along
with tensile and creep experiments) involving kinematic hardening parameters. In this preliminary study, we
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exclude damage in this variant to simplify the equations and reduce the number of model parameters. The
inelastic strain rate (without damage) thus follows the Chaboche flow rule with backstress, [29],

̇�vp =
⟨

|�−�|−R
�

⟩n

sign(�−�), (2.6)

where the backstress, �, is the sum of two Chaboche backstresses:

� =
2
∑

i
�i, (2.7)

�̇i = Ci ̇�vp− i�i
|

|

|

̇�vp
|

|

|

(2.8)
We neglect the recovery terms in the evolution equation of the backstresses while the hardening internal
variable, R, follows the same Voce isotropic hardening rule as discussed earlier in Section 2.1.1. The cyclic
model increases the dimensionality of the problem with four additional backstress terms (C1,C2, 1, 2), as
well as the computational cost when solving the cyclic boundary condition.

2.1.2 Bayesian Analysis

In this work we capture the uncertainties in the material response by generating statistical parameter models
using Bayesian MCMC analysis. The algorithm [31] updates the probability of the model parameters, �,
given by the posterior distribution �(�|D) using Bayes’ theorem applied to the prior distribution, �0(�),
describing whatever prior knowledge is available for the system and the data D:

�(�|D) =
�(D|�)�0(�)

�(D)
(2.9)

The likelihood, �(D|�) is the probability of observing the data, D, given the parameter realizations, �.
Most method treat �(D), which represents the probability of the data, as a normalization factor, giving the
simplified update

�(�|D) ∝ �(D|�)�0(�) (2.10)
The analysis assumes �(D|�) similar to [26], and its logarithm, , represents the likelihood function deter-
mining the acceptance or rejection of the sampled parameters,

�(D|�) = 1
(2��2)

n
2

exp
n
∑

i=1

(

−(yi−gi(�))2

2�2

)

,or, (2.11)

 = log (�(D|�)) ≡
n
∑

i=1

(

−(yi−gi(�))2

2�2

)

(2.12)

where � is the data scatter, treated as a hyperparameter. i iterates over the different sets of experimental data.
yi represents (synthetic or real) experimental results at the different test conditions (for tension, creep, and
cyclic tests), and gi(�) represents the corresponding simulated results with the sampled parameter values
�. This estimation procedure here uses the open-source Python package PyMC3 [32] with the Metropolis–
Hastings algorithm [33] and the Monte-Carlo sampling [34]. The analysis runs several Markov chains to test
convergence.
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Figure 2.1: Calibrated model for Grade 91 at 550 ◦C (a,b) and at 600 ◦C (c,d). In the figures solid lines are
model results and dashed lines are experiments. Different colors represent different experimental
conditions, i.e., strain rates for tensile tests and stresses for creep tests.

2.2 Results

This section tests the performance of the Bayesian analysis against real experimental data of Grade 91 at 550
and 600 ◦C.

2.2.1 Monotonic Model

The calibration database for the model includes results from uniaxial tension and creep experiments at mul-
tiple strain rates and creep stresses drawn from the literature [35–41]. For those cases with more than one
set of experimental data at the same test conditions, we consider a mean (numerical average) response for
both model calibration and the Bayesian MCMC analysis. Solid lines in Figure 2.1 are model predictions;
dashed lines are experimental data. The initial guess is a deterministic genetic algorithm (GA) fit to the
experimental data, minimizing the sum of the squared error between model predictions and experimental re-
sults. Each experiment receives a weight factor so that the tension and creep data weigh equally in the initial
objective function value. The GA calibrates only the five inelastic model parameters while (as previously
mentioned) the linear Larson–Miller correlations provide the damage parameter values. We calibrate the
model separately at 550 and 600 ◦C because the model parameters can depend on temperature. Figure 2.1
shows the calibrated mean-property model results, and Table 2.1 shows the calibrated model parameters (�
in columns 2 and 4) at the two temperatures. The Bayesian MCMC analysis assumes that the parameters
follow a truncated normal distribution (an informed prior) with prior means corresponding to the calibrated
values and assumed standard deviations listed in Table 2.1. We select the parameter bounds (also listed in
Table 2.1 such that they center the calibrated mean values. Moreover, for the sake of completeness we also
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Table 2.1: Prior (normal) distributions of the model parameters with their respective means, �, standard
deviations, and bounds for the Bayesian MCMC analysis.

parameter 550 ◦C 600 ◦C

(�,std. dev) Bounds (�,std. dev) Bounds
n (10.81, 0.5) [9, 13] (8.274, 0.6) [7, 10]
� (844.6, 27.0) [700, 950] (747.4, 57.0) [600, 900]
�0 (3.667, 0.8) [2, 10] (3.550, 0.7) [2, 5]
Q (106.0, 9.0) [80, 130] (112.0, 9.0) [80, 130]
b (45.43, 9.0) [40, 70] (44.33, 9.0) [20, 70]
A (925.0, 20.0) [800, 1000] (650.6, 20.0) [600, 700]
� (11.36, 1.0) [10, 15] (10.71, 1.0) [9, 14]
� (2.04, 0.5) [1, 3] (2.04, 0.5) [1, 3]

vary the damage parameters during the Bayesian analysis, increasing the dimensionality of the problem.

2.2.2 Bayesian MCMC with Real Data

Using the assumed prior distributions (mean, standard deviations, and parameter bounds) as listed in Ta-
ble 2.1, we run the Bayesian analysis for all of the eight (five inelastic and three damage) model parameters.
We select � = 200.0 and � = 0.01 for the real experimental uniaxial and creep conditions for both the temper-
atures, based on experiments with synthetic data. Figure 2.2 shows the posterior distributions obtained from
the Bayesian MCMC analysis for Grade 91 at the two temperatures. The final posterior distributions are all
approximately normal. Table 2.2 summarizes the results obtained from the Bayesian MCMC study with the

Table 2.2: Prior and posterior means of the model parameters.
parameter 550 ◦C 600 ◦C

prior mean posterior mean prior mean posterior mean
n 10.81 11.0 8.274 8.5
� 844.6 832.0 747.4 751.0
�0 3.66 3.88 3.550 3.5
Q 106.0 107.0 112.0 113.0
b 45.43 48.0 44.33 44.0
A 924.9 927.0 650.6 656.0
� 11.36 12.0 10.71 12.0
� 2.04 2.0 2.04 2.0

uniaxial material model. Clearly, the prior and the posterior means are close to each other, indicating the
benefit of initial model calibration with GA optimization followed by Bayesian analysis. Figure 2.3 shows
simulations of 30 random samples from the posterior distributions for each creep and tensile curve, overlaid
on the experimental data. Figure 2.4 compares the distributions of the simulated 0.2% offset stresses (yield
strength) and the simulated failure times, again compared to the corresponding experimental values.

2.2.3 Cyclic Model

This section includes strain controlled cyclic tests to obtain the statistical model for a unified viscoplastic
model for cyclic plasticity. First we test the efficacy of the Bayesian analysis in recovering accurate material
behavior using synthetically generated tensile, creep, and strain controlled cyclic data at multiple conditions.
Subsequently, we implement the BayesianMCMC for real experimental data of Grade 91 at 550 ◦C. Table 2.3

13



9 10 11 12 13
0.0

0.2

0.4

0.6

0.8

1.0

700 750 800 850 900 950
0.000

0.005

0.010

0.015

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

80 90 100 110 120 130
0.00

0.01

0.02

0.03

0.04

30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

0.05

800 850 900 950 1000
0.000

0.005

0.010

0.015

0.020

10 11 12 13 14 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

7.0 7.5 8.0 8.5 9.0 9 . 5 1 0 . 0
0.0

0.2

0.4

0.6

0.8

6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0
0.000

0.002

0.004

0.006

0.008

0.010

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5

80 90 100 110 120 130
0.00

0.01

0.02

0.03

0.04

20 30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

600 620 640 660 680 700
0.000

0.005

0.010

0.015

0.020

9 10 11 12 13 14
0.0

0.2

0.4

0.6

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

(a) 550 C (b) 600 C

Figure 2.2: Posterior distributions of each of the 8 model parameters, n,�,�0,Q,b,A,� ,�, at 550 ◦C, (a), and
600 ◦C, (b) . The histograms are shown in blue while an analytical fit with a beta distribution for
the given data is represented by the red curves. The abscissae span the bounds of each parameter
while the ordinates are normalized such that the integral of their probability density is 1, to include
the histograms and the probability density function (red curve) on the same plot. All parameters
appear to have a near normal distribution.
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Figure 2.3: Spread in the output of 30 randomly sampled models at 550 ◦C, (a) tensile, (b) creep, and at
600 ◦C, (c) tensile, (d) creep. Solid black curves represent the experimental data while the solid
red curves represent the simulated mean result. This figure shows a subset of the total dataset for
brevity; however, a similar trend is observed for all the cases.
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Table 2.3: Bounds for the inelastic parameters of the cyclic model.
Parameter Bounds

n [9, 13]
� [700, 950]
Q [90, 110]
b [3, 6]
C1 [120.0×103, 160.0×103]
C2 [100.0×103, 110.0×103]
1 [90.0×103, 110.0×103]
2 [5.0×102, 11.0×102]

lists the inelastic parameter bounds of the (cyclic) inelastic material model to generate the synthetic data.
Figure 2.5 shows synthetic experimental data for the tensile and creep tests with seven different test conditions
generated with inelastic parameter values sampled from an uncorrelated normal distribution, with mean 0.5
and standard deviation of 0.1 within bounds listed in Table 2.3 when scaled to [0,1].

Effect of Prior Means

Figure 2.6 compares the posterior distributions obtained from two different prior distributions with mean
and standard deviation of 0.3 and 0.2, (a), and 0.7 and 0.2, (b), respectively. The bounds for the Bayesian
MCMC are the same as those used to generate the synthetic reference data (listed in Table 2.3). Clearly,
the posterior means for the parameters n and � converge to their target values while, for other parameters,
the posteriors do not change significantly from their priors. Figure 2.7 shows the predicted responses with
the posterior mean parameter values as well as the corresponding synthetic reference values. Even though
the posterior distributions of the hardening parameters (isotropic and kinematic) are away from their true
values, the material response is accurate and close to the reference. The lack of change for the priors of
these hardening parameters can then be attributed to relatively narrow bounds for the hardening parameters,
especially the kinematic hardening parameters.

Effect of Prior Bounds

Subsequently, we increase the bounds of the kinematic hardening parameters, C1,C2, 1, and 2 from those
listed in Table 2.3 to [1×102, 2×105] for all. Figure 2.8 demonstrates the effectiveness of the Bayesian
MCMCmethodology to clearly recover the true solutions in the parameter space because there is a significant
difference between the prior means (0.3) and posterior means of the kinematic hardening parameters.

Real Experimental Data

Similar to the uniaxial material model, we perform the Bayesian MCMC analysis with real tensile, creep,
and strain controlled cyclic data of Grade 91 at 550 ◦C.

Model calibration The calibration database for the cyclic model includes experiments at multiple tensile
strain rates and creep stresses, and cyclic strain rates and strain amplitudes, [35–41]. We use the GA opti-
mizationmodule in SciPy to perform an initial calibration of the model with real experimental data. Table 2.4
lists the parameter bounds for the GA optimization. Figure 2.9 shows the calibrated model with the real ex-
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Figure 2.6: Posterior distributions from truncated normal priors with mean 0.3, (a), and 0.7, (b), and standard
deviations of 0.2 (for both), for the inelastic parameters of the cyclic model. The respective prior
and target distributions are shown in black and red curves respectively, as well as theKolmogorov-
Smirnov (KS) values and the posterior means and standard deviations in the top corners.
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Table 2.4: Bounds for the initial calibration for the cyclic material model.
parameter Bounds

n [5, 15]
� [100, 950]
Q [-300, 50]
b [3, 10]
C1 [1.0×102, 2.0×105]
C2 [1.0×102, 2.0×105]
1 [1.0×102, 2.0×105]
2 [1.0×102, 2.0×105]

perimental data using the GA optimization algorithm. Tertiary creep is not observed because we have not
considered damage in our model.

Bayesian MCMC We ran preliminary BayesianMCMCanalysis for real experimental datawith twoMarkov
chains having a population of 500 and 300 burn-in points. The standard deviation, �, in the likelihood is set to
200.0, 0.01, and 100.0 for tensile, creep, and cyclic experimental conditions, respectively. Figure 2.10 plots
the posterior distributions for all eight inelastic parameters for the cyclic model, as obtained from Bayesian
MCMC with real experimental Grade 91 data. These are preliminary results because the Markov chains
did not converge, as clearly seen from the results for the kinematic hardening parameters C1 and 1. The
high correlation between the Chaboche backstress parameters could be one of the reasons for the premature
convergence. Figure 2.11 compares the predicted responses with the parameter posterior means from the
Bayesian analysis against the reference experimental data. The mean responses reasonably capture the true
experimental behavior, indicating a feasible choice of the prior distributions. Additionally, in order to see
the spread in the responses, we plotted by sampling eight points from the posterior distribution. Because the
distributions are discrete, we selected these eight samples from the posterior such that they have different
values for the parameter 1; i.e., we select eight equally spread points from a set of 53 unique values of 1,
which also serves as the reference index for the other parameters. Figure 2.12 shows the spread in the pre-
dicted responses for the eight selected sample parameters from the posterior at three different test conditions
for each of the tensile, creep, and cyclic boundary conditions. The spread in the response is lowest for the
uniaxial and highest for the cyclic responses, and this captures the experimental response reasonably. This
further indicates the insensitivity and the correlation among the hardening parameters.
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Figure 2.10: Posterior distributions as normalized histograms from the preliminary Bayesian MCMC for
cyclic model, with real experimental Grade 91 data as reference, and with prior distributions
being the initially calibrated model using the GA optimization. The numbers in the top corners
represent the posterior means and standard deviations of the parameters. Clearly, the chains have
not converged, likely because there is correlation between the kinematic hardening parameters.
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Figure 2.12: Predicted responses with eight sampled parameters from the posterior distributions at three dif-
ferent test conditions for each of the tensile (top), creep (middle), and strain controlled cyclic
(bottom) boundary conditions. The respective test conditions are mentioned in the title of these
plots.
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2.3 Discussion

2.3.1 Uniaxial Model

We tested different aspects of the Bayesian MCMCmethodology with synthetic data and applied the insights
obtained from those numerical studies to perform statistical modeling with real experimental Grade 91 data
at 550 and 600 ◦C.

Table 2.5: Prior and posterior means of the model parameters.
parameter 550 ◦C 600 ◦C

prior mean posterior mean prior mean posterior mean
n 10.81 11.0 8.274 8.5
� 844.61 832.0 747.4 751.0
�0 3.66 3.88 3.550 3.5
Q 106.03 107.0 112.0 113.0
b 45.43 48.0 44.33 44.0
A 924.911 927.0 650.6 656.0
� 11.357 12.0 10.71 12.0
� 2.04 2.0 2.04 2.0

Table 2.5 compares the input prior means to their respective posterior means for all parameters of the
uniaxial elasto–viscoplastic damage model. The closeness of prior and posterior means, along with the fact
that the Markov chains are also converged (potential scale reduction factor close to unity), indicates the
effectiveness of our starting location in the parameter space for the Bayesian MCMC analysis. This is an
important consideration while performing Bayesian MCMC with such high dimensionality because there is
always a chance that a Markov chain sticks at some region in the parameter space, thus giving non-converged
posterior distributions. The hyperparameter values (� in the likelihood function) represent the spread that we
want to capture through the posterior values. With the specified value of � = 200.0 for the tension condition,
the simulated tensile curves encompass the experimental data for most cases. Figure 2.4 shows a spread in
the yield strength of around 50–100MPa and a spread in the failure times of around two orders of magnitude.
The spread in yield strength at 550 ◦C reduces significantly with increasing strain rate, which is not the case
for 600 ◦C results, (a) and (c) in Figure 2.4.

2.3.2 Cyclic Model

We also performed preliminary statistical parameter modeling with a cyclic elasto–viscoplastic material
model with kinematic hardening parameters using both synthetically generated reference data as well as
real experimental data of Grade 91 at 550 ◦C.

Synthetic Experimental Data

Figure 2.6 shows that the BayesianMCMC accurately recovers true solutions for the parameters n and � from
the synthetically generated reference data, as also observed with the uniaxial model, while the hardening pa-
rameters hardly change from their respective priors. Comparing plots in Figure 2.7, it appears that even with
these estimations for the hardening parameters, the predicted responses are very close to the true solution.
Increasing the bounds for these parameters clearly shows the efficacy of the Bayesian MCMC to accurately
recover the true solution for the hardening parameters as well.
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Real experimental data

Table 2.6: Prior and posterior means of the model parameters for Grade 91 cyclic model at 550 ◦C.
parameter prior mean posterior mean

n 0.5 0.5393
� 0.387 0.4256
Q 0.535 0.6758
b 0.517 0.4843
C1 0.656 0.1738
1 0.587 0.5843
C2 0.569 0.5485
2 0.764 0.756

Subsequently, we perform the Bayesian MCMC with the real experimental Grade 91 data at 550 ◦C. The
preliminary analysis does not result in a converged solution especially for the kinematic hardening parameters
(discrete values for parameters C1 and 1 in Figure 2.10) as also summarized in Table 2.6. This can be
attributed to the choice of a short Markov chain (to lower computation time), as well as the strong correlation
among the kinematic hardening parameters. Probable avenues to explore might be:

• Run with a larger Markov chain.
• Perform a sensitivity analysis to determine the relative sensitivity (and correlation) of the parameters

to the likelihood function (especially the kinematic hardening parameters).
• Perform the Bayesian MCMC with multivariate distributions instead of independent univariate distri-

bution for the kinematic hardening parameters.
• Fix two hardening parameters (preferably C1 and 2) to those obtained from the calibration and vary

the remaining two Chaboche parameters for the Bayesian MCMC. The underlying notion being, the
desired spread in the response could be captured by a subset of the kinematic hardening parameters.

• Depending on the sensitivity analysis modify the likelihood function to better capture the effect of the
hardening parameters.

The predicted responses from the posterior means, Figure 2.11 and their respective spread obtained by sam-
pling parameters, Figure 2.12, reasonably captures the experimental response, thus highlighting the relative
insensitivity of the kinematic hardening parameters.

2.4 Conclusions

2.4.1 Summary

This chapter describes a method for calibrating statistical models for empirical inelastic material models and
applies the method to Grade 91 steel at different temperatures and different experimental conditions. The
Bayesian MCMC methodology appears to be a promising technique in developing these statistical models.
We consideredmonotonic and cyclic deformation. For themonotonicmodel, the Bayesian analysis converges
and reasonable captures the observed spread in the experimental data. The posterior distributions with the
real experimental data for the cyclic model should be further improved as a part of future work. Some of the
key findings of this work can be summarized as:
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• An informed prior distribution significantly improves the chances for the Bayesian MCMC to find the
accurate solution as compared to an uninformed prior.

• Not all the parameters are equally sensitive to the likelihood function, and hence a sensitivity analysis
becomes crucial in determining the reliability of the predicted statistical model.

• The underlying data and the parameter bounds also play a critical role in determining the reliability of
the methodology.

• A prior optimization to get a feasible starting point for the Bayesian is also highly efficient for the
methodology to accurately obtain the true solution.

• Because the method is computationally expensive, we have developed the code using multiprocessing
and performed the simulations using our high performance computing cluster.

2.4.2 Future Work

The Bayesian MCMC method did not accurately capture cyclic plasticity data. One factor here is the non-
determinism of the model parameter – a model with more than one backstress is mathematically not unique
regardless of how much experimental data are available. There are infinite combinations of the backstress
parameters that will all give the same kinematic hardening response. One avenue for future work is, then,
developing a description of kinematic hardening that can provide a unique description of the experimental
data. The simplest possibility is to fix the dynamic recovery parameters in the Chaboche model so as to force
the different backstress terms to correspond to different regions of recovery. A better possibility would be to
develop an improved representation of kinematic hardening that does not suffer from non-uniqueness.

In addition, the calibration method could be improved to produce better comparisons to the experimental
scatter. Particularly for cyclic tests, acceleration strategies may be required to expedite the forward simula-
tions through large numbers of load cycles.
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3 MICROSTRUCTURE-BASED REDUCED ORDER
MODEL FOR ENGINEERING-SCALE
CONSTITUTIVE RESPONSE

While the previous section focused on the presentation of an approach to quantify the variability in mechani-
cal performance of a structure resulting from distinct choices of materials systems – although nominally these
are considered as similar – the current section aims at introducing an engineering scale constitutive model
that relates the creep response of Grade 91 to its microstructure. This will be described in terms of dislocation
densities in the cell interiors, the cell walls, and of the overall MX precipitate phase fraction, which is known
to have significant impact on the materials transient and steady-state creep response [1]. This initial effort
will therefore allow for a quantification of the effect of microstructure variability on the performance of an
engineering scale component. Provided this model’s performance is acceptable, the longer term prospects
of this work are to derive a unified model that can relate the differences in mechanical response between
nominally similar materials, but with different pedigrees (e.g., P91, T91) to the initial microstructure of the
medium.
The approach proposed relies, first, on the use of a crystal-plasticity (CP) based mechanistic constitutive

model. This model is calibrated and validated with experimental Grade 91 steel creep test data. Here, only
experimental data with consistent pedigree are used. The model is then applied to quantify the effect of
variations in the MX precipitate content and dislocation content on primary and secondary creep response of
P91. Leveraging the CP-based model, a database of synthetic creep response is generated. This database is
thenmined to generate a surrogate model (SM), which is known as LAROMANCEGr91. This is a model that
can be used in practical engineering-scale calculations, and because it is based on an underlying grain-scale
model, is sensitive to the material’s microstructure.
In what follows, the CP-based constitutive model is described in Section 3.1. The creep test simulation

database generation methods are described in Section 3.2. The formulation of the SM from a series of
polynomial regression models is described in Section 3.3. The demonstration and validation of the SM
under time-varying loading conditions is given in Section 3.4.

3.1 Crystal Plasticity Constitutive Model

The physics-based constitutive model, which quantifies the effects of stress, temperature and microstructure
on the activation of distinct deformation mechanisms to predict the thermal creep behavior of Grade 91
alloy, is presented in what follows. This work is based on the constitutive models initially developed in
previous studies [2, 3]. This single crystal constitutive law is embedded in a mean-field visco-plastic self-
consistent (VPSC) framework thereby allowing for the prediction of the effective mechanical response of a
polycrystalline aggregate from the description [4, 5]. Using a small strain formulation, the total plastic strain
rate is expressed as:

"̇p = "̇d + "̇coble (3.1)
where "̇d and "̇coble refer to the plastic deformation accumulated through dislocation motion and diffusion
process (e.g., Coble creep), respectively. The strain rates due to dislocation motion can be written as the sum
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of the mean shear rates, ̇ , over all active systems in the grain:

"̇d =
∑

s
msij ̇

s (3.2)

where ms is the symmetric part of the Schmid tensor. In effective medium models, such as the VPSC frame-
work, the strain rate and stress within each grain are homogeneous. In practice, though, stress distribution
within each grain is heterogeneous as a consequence of the presence of defects which are non-uniformly
distributed within the medium. To capture this, every grain can be theoretically discretized into sub-grain
points, each with distinct internal stresses, and the stress and strain rates will be different depending on local
dislocation distributions. Following Wang et al. [6], the heterogeneous response within each grain is rep-
resented in a statistical fashion via internal stress distribution. Accordingly, the mean shear rate of the slip
system s in the grain domain is expressed as:

̇
s
= ∫

∞

−∞
̇s (�s) P

(

�s− �s
)

d�s (3.3)
where ̇s is the shear rate of one sub-material point, �s , is the local resolved shear stress. �s = � ∶ ms denotes
the mean resolved shear stress in one grain where � is the deviatoric stress tensor. The probability distribution
function P (

�s− �s
), representing the volume fraction of sub-material points with �s, is represented by the

Gaussian distribution as,

P
(

�s− �s
)

= 1
√

2�V
exp

(

−

(

�s− �s
)2

2V 2

)

(3.4)

where V is the variance of the resolved shear stress, and it depends on the dislocation density. For the sake of
simplicity, V is assumed to be constant throughout the creep simulations, even though the dislocation density
will decrease during creep.

The local shear rate on system s due to dislocation motion can be expressed using the Orowan equation
as,

̇s = �scellb
svs. sign (�s) (3.5)

where bs is the magnitude of the Burgers vector. vs is the mean dislocation velocity, which can be determined
from the mean spacing between obstacles (dislocation mean free path, �s ) and the time a dislocation spends
traveling between obstacles, given by the sum of the waiting time at obstacles ( tsw ) and the travel time within
the interspacing ( tst ):

vs = �s

tsw+ t
s
t

(3.6)
Within each sub-grain, multiple types of obstacles like precipitates and dislocation junctions may co-exist

and control dislocation motion. In P91 alloy, within subgrains, quasi spherical MX precipitates are almost
uniformly distributed. At the same time, the rod-like M23C6 precipitates are located mainly at the sub-grain
and grain boundaries. Thus, within subgrains, dislocation motion will be controlled by the MX precipitates
and other dislocations. Specifically, the presence of multiple obstacles leads to reduction in the mean free
path and increase in waiting time. In this work, the effective mean free path �s is assumed to be the geometric
mean of the interspacing for individual obstacles:

1
�s
= 1
�s�,cell

+ 1
�sMX

(3.7)
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where �s�,cell and �sMX denote the dislocation mean free path for dislocation obstacles and MX precipitates,
respectively. The mean dislocation interspacing associated with dislocation-dislocation interactions can be
given as [7]:

1
�s�,cell

=

√

∑

s
�ss

′
�s′cell (3.8)

where �ss′ refers to the latent hardening matrix. Following the geometric configuration of obstacles on a
plane, the mean interspacing for MX precipitates is written as,

1
�sMX

= ℎMX
√

NMXdMX (3.9)
where ℎMX , NMX and dMX are the trapping coefficient, number density and size of MX precipitates,
respectively.
Stored dislocations can overcome the obstacles either by thermally activated glide, tsw,i,g (e.g., junction

unzipping and Orowan bypass) and/or climb-assisted glide process, tsw,i,cg [8, 9]. These two mechanisms can
occur simultaneously, so the total waiting time can be reduced. With this, the waiting time for each obstacle
type i (= � for dislocations, and MX for precipitates) can be written as,

1
tsw,i

= 1
tsw,i,g

+ 1
ftsw,i,cg

(3.10)
where a factor f(> 1) is introduced to account for the additional waiting time required to detach the dislo-
cations from obstacles after the climb-over process. The mean waiting time of slip system s when both the
obstacles are considered is given by the average of tsw,� and tsw,MX as,

tsw = P�t
s
w,�+

(

1−P�
)

tsw,MX (3.11)
where P� is the probability that a dislocation encounters another dislocation and 1−P� that it encounters a
MX precipitate.

3.1.1 Waiting Time for Thermally Activated Glide

The bypass of both dislocation and MX precipitate type obstacles can be considered as a thermally activated
process either by junction unzipping and Orowanmechanisms. Thus, the waiting time can be described using
a Kocks-type activation enthalpy law [10] as:

tsw,g,i =
1
vsi
exp

(

ΔG0,i
kT

(

1−
(

|�s|
�sc

)p)q)
if |�s| < �sc0 if |�s| ≥ �sc (3.12)

where ΔG0,i is the thermal activation energy without any external stress, k is Boltzmann constant. and T is
the absolute temperature. p (0 < p ≤ 1) and q (0 < q ≤ 1) are exponent parameters related to the shape of the
obstacles resistance profile [10]. vsi is the attack frequency. �sc refers to the Critical Resolved Shear Stress
(CRSS). Apart from the intrinsic frictional resistance �s0 , the net effect of all strengthening mechanisms can
be expressed via use of a non-linear superposition law. The strengthening sources accounted for in this work
include precipitates, clusters, solute pinning, and the dislocations in the cell wall (through long-range stress
field). Hence, we have:

�sc = �
s
0 +

(

�ncw+ �
n
P
)1∕n (3.13)

with �cw = �bs
√

∑

s�
ss′�s′cw denoting cell wall-induced hardening, and �P denotes strengthening due to pre-

cipitates.
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3.1.2 Waiting Time For Climb Assisted Glide

The waiting time for climb can be determined from the mean climb velocity of edge dislocations and average
distance to climb before bypass. Therefore, the average waiting time for edge dislocations is expressed as,

1
tsw,i,cg

= Re
|vsc|
dci

(3.14)

where Re denotes the proportion that edge dislocations contribute to the climb process. dci is the distance toclimb to bypass obstacles. Following Wen et al. [3], the climb velocity vsc is expressed as,

vsc =
2�Dv

[

C0v −C
0
v exp

(

−f scΩ
kT b

)]

bln
(

r∞
rd

) (3.15)

where Ω ≈ b3 is the atomic volume. f sc is the climb component of Peach-Koehler force. Dv is the vacancy
diffusivity, and it is calculated by:

Dv =D0
v exp

(−Ev
m

kT

)

(3.16)

where Ev
m is the vacancy migration energy. C0v is the equilibrium vacancy concentration at temperature T in

the bulk of the crystal, and it is given by,

C0v = exp

(

Svf
k

)

exp

(

−Ev
f

kT

)

(3.17)

where Svf and Ev
f are the vacancy formation entropy and energy, respectively, and it is written as a function

of temperature as,

Ev
f = go−g2T

2−2g3T 3 (3.18)

Svf = −g1−2g2T − .3g3T
2 (3.19)

The gx coefficients are listed in Table 3.1. The terms rd and r∞ in climb velocity equation denote the radii
of inner and outer boundaries for the cylindrical control volume defined around the dislocation line.

3.1.3 Coble Creep

Besides dislocation motion, the diffusion process may also contribute to plastic deformation in polycrystals
via migration of point defects along grain boundaries and within grain interiors. This mechanism usually
takes place at high–temperature and low ormoderate stresses and dictates a creep regimewith stress exponent
≈ 1. In the present work, grain boundaries are not represented explicitly, and grain boundary related material
properties are known for the steel alloy system considered. Thus, Coble creep is written in simple form as,

"̇cobleij =
AcobleSij

T
exp

(

−
Qgb

kT

)

(3.20)

where Acoble and Qgb are effective parameters accounting for all point defects and can be obtained through
the fitting to the experimental data. Sij denotes the ij component of the deviatoric stress tensor.
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3.1.4 Dislocation Density Evolution

The dislocation density evolution law is essential to capture transient in the creep rate. The dislocation density
affects the shear rate on each slip system. Besides, total dislocation density is required to the determine the
variance of the Gaussian internal stress distribution. Notice that only the dislocations in the cell can move
and contribute to dissipation. The evolution of the dislocation density in the cell is expressed as:

�̇scell = �̇
s,+
cell,g − �̇

s,−
cell,a− �̇

s,−
cell,trap (3.21)

where �̇s,+cell,g, �̇s,−cell,a, and �̇
s,−
cell,trap denotes the dislocation generation, dynamic recovery and trapping at

the subgrain boundaries. The dislocation generation rate is associated with the area swept by the moving
dislocations. The term �̇s,+cell,g can be expressed as [10, 11]:

�̇s,+cell,g =
k1
b�s

|̇
s
| (3.22)

where �s

k1
is the effective mean free path. Dynamic recovery involves several mechanisms, such as cross-slip

and climb, that allow the dislocation to move to another slip plane and annihilate with dislocations with
opposite Burger vector. Estrin [12] proposed a general expression of the dynamic recovery rate:

�̇s,−cell,a = k2

(

"̇0
"̇

)
1
n0
�scell|̇

s
| (3.23)

where "̇0 is a reference strain rate. Estrin suggested that the parameter n0 should be associated with the
dominant mechanism [12]. Its value should be between 3 and 5 if it is a climb dominated process, or higher
otherwise. Dislocation trapping rate at the subgrain boundaries is related to the subgrain size �sg :

�̇s,−cell,trap =
k3
�sg

|̇
s
| (3.24)

The trapped dislocations will essentially become part of the wall structure. Meanwhile, the dislocations in
the cell wall will also annihilate. Thus, the rate of �scw can be written as:

�̇scw = �̇
s,−
cell,trap− �̇

s,−
cw,a (3.25)

Dislocation annihilation in the subgrain boundaries is complex and its mechanism for the Fe-Cr alloy is not
fully understood. For the sake of simplicity, the annihilation rate is given here as follows:

�̇s,−cw,a = k4|v
s
c|
(

�scw
)3∕2 (3.26)

The parameters k1 , k2 , k3 and k4 are material constants.

3.1.5 Creep Simulations of P91 Alloy

Thermal creep simulations of Grade 91 alloy are performed using the affine-VPSC formulation for four
different temperatures – namely, 823K, 873K, 923K and 973K, for different stresses. The polycrystal model
parameters are calibrated against the experimental results [13, 14]. The following six experimental cases
were used for calibration: 823K and 200 MPa, 873K and 120 MPa, 873K and 200 MPa, 923K and 125 MPa,
973K and 50 MPa, and 973K and 150 MPa. The remaining cases, a total of 16, are predicted and validated
against the experiment. The model material is assumed to be heat-treated; thus, the texture is approximated
by 50 randomly oriented grains, as shown in Figure 3.1(a). Following the work of Wen et al. [2], we choose
the initial values of �scell and �scw for each system to be 4×1012 m−2 and 1×1013 m−2 , respectively. Similarly,
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theNMX and dMX are set to be 3×1020 m−3 and 37 nm , respectively. The predicted and calibrated model
parameters are listed in Table 2.1.
The creep behavior of Grade 91 alloy predicted by the VPSCmodel for the four temperature cases is shown

in Figure 3.1 (b)-(h), along with the experimental data. It clearly shows that the polycrystal model captures
the thermal creep behavior accurately for all stress and temperature cases. The experimental data that include
time-resolved creep rates (d-h) also include tertiary creep, i.e. damage, in some cases, e.g. (g). The increase
in creep rate associated with tertiary creep is not addressed by the model and is not matched by the model.
Note that the data at lower stresses and temperatures (873 and 823 K) [15, 16] were for the material T91, not
P91. The data at 873 K and 200 MPa for T91 were used to calibrate the Coble creep parameters. Coble creep
is primarily a function of diffusivity thus, it is controlled by chemistry. From this, only small differences in
the Coble creep properties of P91 and T91 are expected.
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Table 3.1: Calibrated constitutive model parameter values for P91 steel.
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Figure 3.1: (a) Pole figure for the initial random texture of 50 grains. VPSC model predicted thermal creep
behavior of P91 alloy as a function of stress at (b) 823K; (c) and (d) 873K; (e) and (f) 923K;
(g) and (h) 973K. The dotted lines represent the experimentally measured steady state creep rate.
Similarly, the symbols represent the experimental observations. The solid lines, dotted lines, and
square symbols correspond to creep rate plotted on the primary-vertical axis. The dashed lines
and circle symbols correspond to creep strain plotted on the secondary vertical axis.
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3.2 Database Generation

Polycrystalline responses are gathered in a database to be fit with the SM. The database is made of creep
simulations (17,227 in training, 2,859 in testing) to span operating conditions of interest for application
with the geometry of the engineering component to which this model is applied later in this report, 1 –
150 MPa applied effective stress, and temperatures from 780 to 900 K. To include the effect of a mate-
rial’s pedigree within the SM, parameters are included to account for variations in dislocation density and in
MX precipitate content. The database is gathered to capture the relationship between the inputs considered
[

"vm,�cell, �W ,T ,�vm,�MX
] , and the isotropic rates "̇vm, �̇cell , and �̇W . The SM produces these rates via

polynomial regression on the inputs. Notably, the inputs and outputs are transformed to improve the accu-
racy of the regression. Numerous CP-based creep test simulations are performed for which initial dislocation
density and precipitate content are varied. The database is assembled using polycrystal-scale quantities de-
fined using the parameters of the CP-based model. The CP-based model considers both { 110} < 111 > and
{112} < 111 > slip modes. The effective dislocation density parameters for cells, �cell , and cell walls, �W ,
are determined by averaging the slip-system specific densities in each of the 50 grains simulated. The phase
fraction of MX precipitates, �MX , is determined from the number density of MX precipitates, NMX , and
the diameter of MX precipitates, dMX , as

�MX =
�NMX�dMX

6
(3.27)

where
dMX = 3×10−8

(

1+

[

log�MX +7.77
]

6.692

)

(3.28)

To constrain the MX precipitate content to be univariate, an arbitrary relationship is defined that allows
dMX to increase with increasing �MX . Using Equation 3.27 with Equation 3.28 , bothNMX and dMX can
be identified from �MX . The initial values of �MX , �cell , and �W were varied to encompass variations in
material pedigree. Characterization of P91 alloy has shown values of dMX of around 30 nm [1, 17–19] that
can increase to 60 nm after thermal aging [20]. Dislocation densities in the material may vary as well, and
characterization informed the ranges assigned to the values as well [18]. The ranges of microstructure pa-
rameters and operating conditions included in the simulation database are defined in Table 3.2. A systematic
random sampling method is employed to sample these ranges [21]. The simulations are also constrained by
a maximum strain (8% ) and maximum time ( 106 ℎr ).

Table 3.2: Ranges of the polycrystal-level parameter values gathered in the simulation database
Variable Allowable Bounds
Cell Dislocation Density (1012m−2) [1, 6]
Wall Dislocation Density (1012m−2) [6, 18]
MX Phase Fraction [0.0005, 0.1]
von Mises Stress (MPa) [1, 150]
Effective Strain (m/m) [0.0, 0.08]
Temperature (oC) [507, 627]
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3.3 Surrogate Model Formulation

The SM assumes an isotropic viscoplastic response. Accordingly, a Prandtl-Reuss flow rule is used to deter-
mine the tensorial viscoplastic strain rate from an effective viscoplastic strain rate,

"̇ij = "̇vm
3
2
Sij
�vm

(3.29)

where Sij is the deviatoric stress tensor, and �vm =
√

3
2SijSij denotes the von Mises stress. The value of "̇vm

and dislocation evolution rates �̇cell and �̇W are determined using polynomial regression models. To increase
the fidelity of the regression models, multiple regression models are used for each output, with individual
regression models covering a subregion of the input domain. These models (or ‘tiles’) are used together to
cover the full domain of interest. Within each tile, a Legendre polynomial expansion provides the regression
model. P i (x) denotes a polynomial of degree i for input x . The range of x is normalized to a [−1,1] interval
in defining the polynomial. In addition, transformations of the inputs and output quantities are included in
the formulation. The regression functions of the transformed values are thus formulated:

"̇∗∗vm ∼
∑

0≤i…n≤Ndeg

�ijklmn" P i
(

�∗cell
)

P j
(

�∗w
)

P k
(

T ∗
)

P l
(

�∗vm
)

Pm
(

"∗vm
)

P n
(

�∗MX
) (3.30)
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∑
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(
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)
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)
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(
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)
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(
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)
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(

�∗vm
)

Pm
(
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)
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(
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where �ijklmn" are the regression coefficients, specific to each output, and Ndeg is the maximum degree of
polynomials used in the model. When Ndeg = 2 , there are (Ndeg+1

)Ninputs = 729 values in �ijklmn" . The
symbols ∗ and ∗ ∗ indicate the input or output has been transformed.

The transformations are used because strain rates rarely have linear dependence on T ,�vm , or microstruc-
ture. The polynomial regression function is most suitable when fitting linear (or linearized) relations. The
transformations are performed prior to the normalization to [−1,1] . The transformations used to linearize
P91 input–output relations are shown in Table 1.2. A symmetric log transformation is used for the dislocation
density evolution rates. This transformation is defined as per Table 3.3, where y is the transformed output, z
is the original output, and m is a constant used to tune the transformation. Within Table 3.3, this transform
is denoted as pw (z,m) .

The aforementioned regression models are used to tile across the temperature and stress ranges. Each tile
is defined on a temperature subrange (one of [780,836] , [804,876] , and [844,900] K) and a stress subrange
(out of [1.0,70.5] , [30.8,120.2] , and [80.5, 150]MPa). Nine tiles in total are presented in Figure 3.2. The
overlapping regions are determined using a sigmoid weighting function to blend the results of the overlapped
tiles. The sigmoid function is defined as

w1 =
1

1+exp
(

4v
v2−1

) , w2 = 1−w1 (33)

where the value of v ∈ (−1,1) is determined in terms of the overlapping input dimension (either T or �vm )
as,

v =
2
(

x−xmin
)

xmax−xmin
−1 (34)
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Table 3.3: Transformations of the input and output values used to linearize the regression functions for P91.

where x denotes the overlapped input. Where four tiles are overlapping, the sigmoid weighting is performed
to merge along both T and �vm , one dimension at at time.
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Figure 3.2: Layout of the overlapping multiple regression model tiles.
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Figure 3.3: A comparison of the SM predictions with VPSC for two validation creep test simulations. From
left to right, the evolution of "vm, �cell, and �W are shown, with �cell and �W values given on a
log scale. Inputs for case (a) are [�cell = 3.8×1012 m−2,�W = 1.36×1013 m−2,T=869 K,�vm =
134MPa,�MX = 0.083], and for case (b) [�cell = 1.88×1012 m−2,�W = 1.03×1013 m−2,T=886
K,�vm = 49MPa,�MX = 0.0076]
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3.4 Surrogate Model Validation

The validation of the SM is performed in two parts, beginning with the SM replication of CP creep test
simulations spanning the input domain. Following analysis of these results, the SM is applied to complex
loading conditions, constant stress with a gradual increase in temperature, a jump in applied stress, a ramping
up of applied stress, and a cyclic stress condition. These complex loadings are never used in training the SM.
The predictions of the SM in these cases are given here to interrogate the capabilities and limitations of the
SM. These cases are also used to discuss the fidelity of the SM when used in FEM simulations.

3.4.1 Creep Test Validation

Validation of the SM is performed using 300 CP-based creep test simulations reserved separate from the
training and testing data. The SM predicts the entire creep test simulation from the values of the inputs
at t = 0 and the magnitudes of the time-steps. These validation cases test the accuracy of the SM over
interpolated regions of the targeted operating conditions. Further, the simulations present a chance for errors
in one time-step to propagate to subsequent time-steps. The validation tests are critical to identifying such
errors. Two validation cases are shown in Figure 3.3. The cases show the SM has a high fidelity to the VPSC
results. There is a large difference in the magnitude of the primary creep between the two cases. The SM
accurately captures this difference. The steady-state creep rate is increasingly important at longer lifetimes,
and in both cases the SM matches this steady-state rate well. The full validation of the SM involves 300
simulations similar to the simulations in Figure 3.3. To summarize the results, the mean squared relative
error (MSRE) is used. For the predicted strains in Figure 3.3 (a) and (b), the MSRE values are 0.0044 and
0.0146, respectively. This value is presented for all 300 cases in Figure 3.4. In Figure 3.4 (a) and (b), each
creep test simulation is plotted as a point with respect to the T and �vm imposed for that test. In (a) these
points indicateMSRE

(

"vm
) by color, and in (b) the points indicate the ratio of the predicted creep rate at

steady state to that calculated with VPSC. The plots show excellent fidelity, excluding the triangular region
of high T and high �vm , and excluding the extreme low �vm at high T .

3.4.2 Complex Loading Conditions

The SM is trained on only creep test simulations, however it is desired that the SM can be applied under more
complex conditions. In FEM, boundary conditions are subject to change over the course of the simulation. To
support the use of the SM in FEM, the SM is validated against VPSC simulations in which either temperature
or applied stress are allowed to vary with time. Four such complex loadings are defined for this purpose: a
stress jump condition, a stress ramp condition, a temperature ramp condition, and a stress cycle condition.
The validation of the SM in a stress-jump condition is shown in Figure 3.5. The stress jump refers to an

instantaneous doubling of the applied stress from 33.5MPa to 67MPa after 70 hrs of an otherwise monotonic
creep test simulation. The applied stress is shown as a function of time in Figure 3.5. The SM replicates the
VPSC simulation results with an excellent level of fidelity. The SM performance in a stress-ramp simulation
is shown in Figure 3.6. The stress-ramp refers to a gradual increase in applied stress after an initial constant
stress period of 28 hrs. The stress is increased from 30.9 MPa to 61.8 MPa at a rate of 3.09×10−3 MPa/s.
The SM demonstrates an excellent fidelity in the stress ramp case. These results support the use of the SM
when applied stress is subject to changes, whether rapid or gradual.

A simulation in which the temperature is rapidly increased ( 0.5 K∕s ) from an initial value of 790 K to
890K is shown in Figure 3.7, referred to as a temperature ramp. The SM and the VPSC simulations show
initial agreement. As the temperature is increased, the expected increases in rates "̇vm, �̇cell , and �̇W are
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Figure 3.4: The (a) MSRE and (b) ratio of creep rate at steady-state for SM and VPSC simulations, plotted
by the imposed and conditions for each of 300 validation creep test simulations.

Figure 3.5: A validation of the SM in a stress-jump loading condition. The SM is shown in blue and the VPSC
result is shown in red. The initial input values are [�cell = 5.2×1012 m−2, �W = 7.7×1012 m−2,
T=867 K, �vm = 33.5MPa, �MX = 0.0596] The stress instantaneously doubles after a period of
70 hrs.

Figure 3.6: A validation of the SM in a stress-jump loading condition. The SM is shown in blue and the VPSC
result is shown in red. The initial input values are [�cell = 2.3×1012 m−2, �W = 1.41×1013 m−2,
T=889 K, �vm = 30.9MPa, �MX = 0.0513] The stress doubles gradually after a period of 28 hrs
at a rate of 3.09×10−3 MPa⋅s−1.
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Figure 3.7: A validation of the SM in a temperature ramp loading condition. The SM is shown in blue and
the VPSC result is shown in red. The initial input values are [�cell = 1.77 × 1012 m−2, �W =
1.35×1013 m−2, T=790 K, �vm = 38.7MPa, �MX = 0.0925]

Figure 3.8: A validation of the SM in a stress-cycling loading condition. The SM is shown in blue and the
VPSC result is shown in red. The initial input values are . After 4 hrs, a sinusoidal stress cycle
is imposed, with a maximum stress of and a period of 100 m, for 5 cycles.

produced by both VPSC and SM. The rate increase with temperature is overpredicted by the SM in this case.
The fidelity of the SM to VPSC in this simulation is notably lower than in previous cases. Multiple factors
distinguish this simulation case from those previously shown. In addition to the introduction of a temperature
change, the total duration of the simulation is very short, much shorter than 1 hr. The fidelity of the SM under
temperature changes is an area of ongoing development.
The suitability of the SM for cyclic stress applications is investigated. A loading is designed in which an

initially low stress (5.0 MPa) is applied for 4 hrs. Following this, a sinusoidal stress cycle with maximum
stress of 100 MPa and period of 100 m is imposed 5 times. The SM shows good agreement with the VPSC
results.

47



Bibliography

[1] P.E. O’Donoghue C.O Murch, S.B. Leen and R.A. Barrett. A physically-based creep damage model
for effects of different precipitate types. Mater Sci. Eng. A, 682:714–722, 2017.

[2] W. Wen, L. Capolungo, A. Patra, and C. N. Tomé. A. physics-based crystallographic modeling frame-
work for describing the thermal creep behavior of fe-cr alloys,. Metall Mater. Trans. A., 48, 2017.

[3] W. Wen, A. Kohnert, M. Arul Kumar, L. Capolungo, and C. N. Tomé. Mechanism-based modeling of
thermal and irradiation creep behavior: An application to ferritic/martensitic ht9 steel,. Int J. Plast.,
126(10263):3, 2020.

[4] R. A. Lebensohn and C. N. Tomé. A self-consistent anisotropic approach for the simulation of plastic
deformation and texture development of polycrystals: Application to zirconium alloys,. Acta Metall
Mater., 41:2611–2624, 1993.

[5] R. A. Lebensohn, C. N. Tomé, and P. P. Casta Neda. Self-consistent modelling of the mechanical
behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations,. Philos Mag.,
87:4287–4322, 2007.

[6] H. Wang, L. Capolungo, B. Clausen, and C. N. Tomé. Int a crystal plasticity model based on transition
state theory,. J. Plast., 93:251–268, 2017.

[7] P. Franciosi and A. Zaoui. Multislip tests on copper crystals: A junctions hardening effect. ActaMetall.,
30:2141–2151, 1982.

[8] E. Arzt and D. S. Wilkinson. Threshold stresses for dislocation climb over hard particles: The effect
of an attractive interaction. Acta Metall., 34:1893–1898, 1986.

[9] E. Arzt and J. R"osler. The kinetics of dislocation climb over hard particles—ii. Effects of an attractive
particle-dislocation interaction, Acta Metall., 36:1053–1060, 1988.

[10] K. Kitayama, C. N. Tomé, E. F. Rauch, J. J. Gracio, and F. Barlat. A crystallographic dislocation model
for describing hardening of polycrystals during strain path changes application to low carbon steels. Int
J. Plast, 46:54–69, 2013.

[11] J.-F. Wen, S.-T. Tu, F.-Z. Xuan, X.-W. Zhang, and X.-L. Gao. Effects of stress level and stress state on
creep ductility: evaluation of different models,. J Mater. Sci Tech, 32:695–704, 2016.

[12] Y. Estrin. Dislocation theory based constitutive modelling: foundations and applications,. J Mater.
ProcessTechnol., 80:33–39, 1998.

[13] M. Basirat, T. Shrestha, G. P. Potirniche, I. Charit, and K. Rink. A study of the creep behavior of
modified 9cr–1mo steel using continuum-damage modeling,. Int J. Plast., 37:95–107, 2012.

[14] T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche, K. K. Rink, and U. Sahaym. Creep deformation
mechanisms in modified 9cr–1mo steel,. J Nucl. Mater, 423:110–119, 2012.

48



[15] K. Kimura, M. Tabuchi, Y. Takahashi, K. Yoshida, and Koichi Yagi. Long-term creep strength and
strength reduction factor for welded joints of asme grades 91, 92 and 122 type steels, int. J. Microstruct.
Mater Prop., 6:72–90, 2011.

[16] K. Kimura, K. Sawada, H. Kushima, and Y. Toda. Microstructural stability and long term creep strength
of grade 91 steel. Energy Mater, 4:176–183, 2009.

[17] G. Golański, J. Jasak, A. Zieliński, C. Kolan, M. Urzynicok, and P. Wieczorek. Quantitative analysis
of stability of 9% cr steel microstructure after long-term ageing,. Arch Metall. Mater, 62, 2017.

[18] C. G. Panait, W. Bendick, A. Fuchsmann, A.-F. Gourgues-Lorenzon, and J. Besson. Study of the
microstructure of the grade 91 steel after more than 100,000 h of creep exposure at 600 ◦ c,. Int J.
Press Vessels Pip, 87:326–335, 2010.

[19] K.Maruyama, K. Sawada, and J. Koike. Strengtheningmechanisms of creep resistant temperedmarten-
sitic steel. ISIJ Int, 41:641–653, 2001.

[20] M. Li, K. Natesan, and W. Chen. Report on understanding and predicting effects of thermal aging on
microstructure and tensile properties of grade 91 steel for structural components, argonne national lab.
(anl), argonne, il (united states). 2017.

[21] J. L. Deutsch and C. V. Deutsch. Latin hypercube sampling with multidimensional uniformity,. J Stat,
142:763–772, 2012.

49



4 Uncertainty Quantification of Engineering-Scale
Component Life Predictions

In this chapter we present the problems used to evaluate the high temperature creep behavior of the Grade
91 alloy material models, described in the previous sections, and the response of the models to material
uncertainties. Prior work [1] evaluated the response of the NEML and LAROMANCE Grade 91 material
models for a single set of input properties as applied to a 2D and full 3D model. In this work we focus on the
statistical high temperature response by sampling the material inputs over the full range of valid parameters
for these models. To sample over a large parameter space for multiple parameters, we limited our analysis to
2D axisymmetric models. Both the 2D axisymmetric spherical nozzle and the pipe cross section shown in
the inset are shown in Figure 4.1 and are modeled with the NEML and LAROMANCE Grade 91 materials.
The simplified pipe cross section model is fast-running and allows us to evaluate material models over a
range of stress states found for a thick walled pressure vessel. The larger sphere nozzle geometry model tests
the material models under a more complicated stress state and is a refined 2D version of the 3D coarse sphere
nozzle mesh used in [1]. Each geometry is simulated under a constant pressure and temperature for either
twenty years or until the maximum principal strain reaches a critical level, whichever occurs first.

Pi

!!

Planar 
Constraint

Pipe Model

Inner Diameter:
di = 1.884”

Outer Diameter:
do = 2.234”

2D Cylindrical Symmetry Axis

Sphere Radius, Ri = 12”
Bottom Thickness, TB = 1”
Top Thickness, TT = 0.35”
Inner Pressure = Pi
Outer Pressure = 0
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##"$#!"
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TB

x

y

Figure 4.1: Internally pressurized axisymmetric sphere-nozzle problem, with simplified pipe model shown
in inset.

The dimensions for the simplified 2D pipe cross section model are taken from the sphere nozzle geom-
etry at the location indicated by the red box in Figure 4.1. Dimensions and boundary conditions are given
in Figure 4.1. The pipe cross section is modeled with five 2D axisymmetric QUAD8 elements through the
thickness. The boundary conditions applied to the model are RZ-symmetry (i.e., zero x-displacement along
the y-axis and zero y-displacement along the x-axis). The pipe cross section model is pressurized with an
internal pressure, P, zero external pressure, and axial stress, �a, given by the equation for a long thick walled
pressure vessel. To approximate an infinitely long pipe, the nodes on the positive y-surface are constrained to
remain planar while the nodes on the bottom surface are constrained to only move along the x-axis. The sim-
ulations were initialized with a constant internal pressure ranging from 5–8 MPa and a uniform temperature
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of either 550 ◦C or 600 ◦C.
Themaximum vonMises stress in an internally pressurized thick walled cylinder is largest near the internal

surface and will be the location of the maximum creep strain. The maximum principal strain we use as the
critical measure in the simulation response is derived from the total strain which will include elastic and
creep components; however, for the pressure ranges we use in our analysis, the elastic component of strain
should be negligible when compared to the creep strain when the overall principal strain reaches 1%.
The sphere nozzle problem shown in Figure 4.1 is also modeled with 2D axisymmetric QUAD8 elements.

The model consists of 3,282 elements and 11,044 nodes. Most of the model is meshed with 4 elements
through the thickness. The mesh density is then doubled near the nozzle pipe junction where it reaches a
maximum of 13 elements through the thickness. The same boundary conditions are applied here as were
used for the simplified pipe cross section model (i.e., RZ-symmetry, zero displacement at the negative y-
boundary, axial stress at the positive y-boundary with nodes constrained to remain planar, varying internal
pressure on the negative x-surface and zero pressure along the outer positive x-surface). The dimensions
given in Figure 4.1 and used in the 2D axisymmetric model are the same as those used for the 3D sphere
nozzle mesh presented in [1]. The simulations were initialized with a constant internal pressure ranging from
1.5–3 MPa and a uniform temperature of either 550 ◦C or 600 ◦C.
The sphere nozzle provides a more complex stress-strain response as opposed to the nearly analytical re-

sponse of the simplified pipe cross section model. The main complexities come from the stress concentration
created by the transition of the nozzle into the pipe wall and from the nonuniform deformation. Due to these
two factors the maximum principal strain is not guaranteed to be located at the inner surface and the direction
of the maximum principal strain will change spatially.

4.1 NEML Material Model Results

In this work, we consider the statistical nature of the models response due to material uncertainties. In our
prior work [1] we considered the strain and pressure driven response of the NEML and LAROMANCE
P91 models for only a single set of input material parameters. As was done in our prior work, we only
consider monotonic loading and therefore do not use any of the NEML material properties fit to cyclic
loading experimental data presented in the previous section. For the NEML P91 material model, the MCMC
posterior distributions shown in Figure 2.2 with mean values given in Table 2.2 were previously fit to Beta
distributions.
We use the MOOSE Stochastic Tools Monte Carlo sampler to efficiently run the simulations and manage

the sampling of the material properties for this work. The Beta distribution is currently not supported by
the MOOSE Stochastic Tools Monte Carlo sampler; therefore, we refit the posterior distributions for the
material properties to truncated normal distributions shown by the magenta lines in Figure 4.2. Values for
the truncated normal distributions are given in Table 4.2. We also do not consider damage in these high
temperature creep simulations under low stress conditions and therefore do not include the damage model
given by Equation 2.5, reducing the number of parameters we fit in Figure 4.2 to five. The NEML P91 model
also uses the temperature dependent elastic constants given in Table 4.1. All of our simulations assume
homogeneous material properties at the sampled values for a given random realization.

Table 4.1: Temperature dependent elastic constants used for NEML and LAROMANCE P91 model
550 ◦ C 600 ◦ C

Young’s Modulus 174 GPa Young’s Modulus 168 GPa
Poisson’s Ratio 0.31 Poisson’s ratio 0.31
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Table 4.2: Posterior MCMC distribution of the NEML model parameters.
parameter 550 ◦ C 600 ◦ C

(�,�) Bounds (�,�) Bounds
n (11.09, 0.37) [10, 12] (8.455, 0.47) [6.9, 10]
� (832.4, 23) [760, 909] (750.6, 41.9) [613, 884]
�0 (3.769, 0.83) [1.2, 6.5] (3.547, 0.66) [2.0, 5.8]
Q (106.9, 8.7) [78, 135] (112.6, 8.19) [87, 140]
b (47.99, 7.7) [30, 70] (44.00, 8.28) [21, 71]

Input Parameters from Posterior MCMC (T=550C)

a)

b)

Input Parameters from Posterior MCMC (T=600C)

Q

Q

Figure 4.2: Input material parameters for the NEMLmodel. MCMC posterior material property distributions
in green fit to truncated normal distributions (magenta) for (a) 550 ◦C and (b) 600 ◦C. Truncated
normal distribution properties given in Table 4.2.
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4.1.1 NEML Simplified Pipe Model Results

The statistical results for the pressurized pipe cross section model from the inset of Figure 4.1, using the
NEML material model are given in this section below. The maximum von Mises stress in an internally
pressurized cylinder is highest near the internal surface and will be the location of the maximum creep
strain. The maximum principal strain as a function of time is shown in Figure 4.3a for 2000 Monte Carlo
samples from the distributions shown in Figure 4.2 and Table 4.2. We see that as the pressure increases, the
spread in maximum principal strain increases. As the temperature increases to 600 ◦C in Figure 4.2b, we
switch between two different fitted distributions, and the distributions for T=600 ◦C lead to a larger range
of maximum strains. The lines in the plot are semi-transparent, so the more darkly filled regions indicate a
higher density of samples following a strain path through that region. Using the line darkness as a guide, we
see that although the strain distributions and their slope are increasing for T=550 ◦C, most of the samples
still follow a flat line. This observation does not hold for T=600 ◦C (Figure 4.2 b), where the principal strain
histories for most samples deviate considerably from a flat line.

Maximum Principal Strain Histories at 20 Years (T=600C)

Maximum Principal Strain Histories at 20 Years (T=550C)

a)

b)

Simulation Time (s) Simulation Time (s) Simulation Time (s) Simulation Time (s)

Simulation Time (s) Simulation Time (s) Simulation Time (s) Simulation Time (s)

Figure 4.3: Maximum principal strain as a function of time for up to 20 years or until 1% strain was reached
for 2000 Monte Carlo samples of posterior truncated normal distributions shown in Figure 4.2.

The final states of the maximum principal strain at the end of 20 years for the time series of simulations
given in Figure 4.3 are shown in Figure 4.4 for the same range of pressures and temperatures. 500,000Monte
Carlo samples of the material properties were used to produce these plots. Simulations were also ended if a
critical maximum principal strain of 1% was reached. At T=550 ◦C, as shown in the top row of Figure 4.4,
none of the simulations reach the critical strain in 20 years. At this lower temperature, we also see that most
of the material samples resulted in the lowest final strains and that only a low number of material samples
demonstrated higher strains. The distribution of principal strains also increases with increase pressure. Note
that the limits on the x-axis Figure 4.4 are adjusted to fit each pressure’s strain distribution. The strain
distribution at the lowest pressure of 5 MPa has a range of 1×10−4 while at the 8 MPa the range increases to
1×10−3. Because of the logarithmic scale, some high strain outliers do not appear in the plots.

At T=600 ◦C, as shown in Figure 4.4b, larger principal strain distributions are observed with all of the
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b)

Final Maximum Principal Strain Distributions at 20 Years (T=600C)

Final Maximum Principal Strain Distributions at 20 Years (T=550C)

Principal Strain Principal Strain Principal Strain Principal Strain
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Figure 4.4: Final maximum principal strain reached after 20 years for 500,000 Monte Carlo samples of the
posterior material distributions. The y-axis for all pressures and temperatures remains the same
while in the top row, labeled (a), for T=550 ◦C the x-axis is adjusted to each pressure’s distribution
of maximum principal strain to account for the large variation. In the bottom row, labeled (b),
for T=600 ◦C, the larger distributions in strains allow us to use the same limits on the x-axis for
all pressures.

distributions, plotted with the same limits on the x-axis. In every distribution at least one sample of the
material properties leads to a maximum principal strain above the critical level of 1%. As the pressure
increases at T=600 ◦C, the distributions become larger and flatten out. The maximum strains at the higher
pressures would continue to increase but the simulations were at the time step at which the critical strain
exceeds 1%, leading to the histograms reporting values slightly larger than 1%. Some simulations reach
strains slightly higher than 1% because the simulation is terminated on the next time step after the principal
strain exceeds 1% strain.
The final strain states from Figure 4.4 are used to estimate a probability of failure at twenty years for a

critical principal strain of 1%. The probability of failure at twenty years is given by evaluating the cumulative
density function (CDF) for reaching this strain criterion at twenty years. For T=600 ◦C, the failure probability
for P=6MPa is 1.2×10−4, for P=7MPa it is 4.4×10−3, and for P=8MPa it is 4.2×10−2. Only a single sample
reaches 1% strain for T=600 ◦C and P=5 MPa, making the probability of failure 2×10−6 but more samples
would be required to provide an accurate estimate of such a low probability of failure. None of the samples
fail at T=550 ◦C. The probability density function (PDF) and CDF for the time to failure are shown in
Figure 4.5 for T=600 ◦C and two pressures; 6 MPa and 7 MPa.

To correlate failure with the input material properties, we plot the distributions of the input parameters
for the cases that failed in blue in Figure 4.6 and compare them to the total distribution of input parameters
shown in green. We provide these plots for only the two pressures presented in Figure 4.5. We see that
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a) b)

Figure 4.5: Probability density function (PDF, green histogram) and cumulative distribution functions (CDF,
blue line) for simulations in Figure 4.4 that reach a critical maximum principal strain of 1% at
T=600 ◦C.

lower values for n and b are most closely correlated with failure, and that pressure does not significantly
effect the shape of these two distributions for the failed samples. For the other material properties, the failed
sample distributions closely match the original input parameter value distributions and thus do not have a
large correlation with failure.
Since none of the samples reach a critical strain of 1% at any pressure for T=550 ◦C, we choose an al-

ternative critical strain criterion for plotting the distributions of parameters for “failed” cases: the top 1%
of strain reached for all samples in Figure 4.3 is considered as the failure strain. For this adjusted criterion,
we plot the distributions of material properties leading to the top 1% of strain in magenta in Figure 4.7 ver-
sus the original distributions of material properties in green. We only plotted the material distributions for
the highest pressure tested, P=8 MPa, because we noted very little variation in the shapes of the material
distributions that lead to the top 1% of final strains for all of the pressures tested. At the lower temperature
we again see that n leads to higher strains while the other material properties are shown to have very little
effect. This pattern holds true even for b, which we saw was correlated with a higher probability of failure
for T=600 ◦C in Figure 4.6.

55



Input Parameters (T=600C, P=6MPa)

Input Parameters (T=600C, P=7MPa)

All Simulations

Simulations that 
reached 1% Strain

a)

b)

Q

Q

Figure 4.6: Normalized histograms of input material parameters for all 500,000 samples in green and those
that failed within twenty years in blue at T=600 ◦C. The blue histogram in (a) contains 64 samples
and (b) contains 2144 samples.

Input Parameters (T=550C, P=8MPa)

All Simulations

Top 1% of Simulations 
with Highest Strain

Q

Figure 4.7: Normalized histograms of input material parameters for all 500,000 samples in green and the top
1% of samples with the highest strain after twenty years in magenta at T=550 ◦C and P=8 MPa.
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4.1.2 NEML Sphere Nozzle Model Results

In this section we present the statistical results from the NEML Grade 91 material model applied to the
pressurized sphere nozzle model from Figure 4.1 simulated at constant pressures and temperature. The
stress and strain distribution for the sphere nozzle model, using the mean values of the material properties
in Table 4.2 for T=600 ◦C, is shown in Figure 4.8 with an applied internal pressure of 3 MPa. We see the
stress and strain being concentrated near the junction of where the nozzle and pipe connect. We observe two
locations near the sphere nozzle junction, on the inner and outer surface, where the von Mises stress and
maximum principal strain reach their highest values. This simulation was terminated after 303 days when
the critical strain of 1% was reached. The stress concentration in the nozzle sphere geometry leads to higher
stresses than those observed in the simplified pipe model. For this reason, we perform our simulations over
a lower, smaller pressure range of 1.5–3 MPa and the same temperatures.

undeformed
displaced 10x

a)

b)

1.1e+08

T=600C   P=3MPa

Figure 4.8: Constant pressure simulation results at 3 MPa for mean NEML Grade 91 material properties at
T=600 ◦C from Table 4.2. The results shown are for a simulation time of 303 days at which point
the maximum principal strain in one of the elements reached 1%. (a) Final maximum principal
strain contours on 10× displaced mesh, compared to the undeformed mesh in gray. (b). Final
von Mises stress contours.

At each temperature and pressure we took 100,000 Monte Carlo samples from the truncated normal mate-
rial distributions given in Table 4.2. The final states for the maximum principal strain at the end of 20 years
for these simulations are shown in Figure 4.9. Overall the nozzle simulation results show similar behavior
to that observed for the pipe model shown in Figure 4.4: none of the samples fail at T=550 ◦C, the distri-
butions at T=550 ◦C are clustered at low strain for each pressure and decrease exponentially toward higher
strains, and increasing pressure increases the final strain distribution for both temperatures. Several of the
simulations for T=600 ◦C and pressures of 1.75, 2, and 2.5 MPa were terminated early because they reached
the critical strain of 1%, causing the distributions to be artificially skewed toward 1% strain. Again, the sim-
ulations are terminated on the time step where the principal strain exceeds 1%, allowing the maximum strain
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Final Maximum Principal Strain Distributions at 20 Years (T=600C)

Final Maximum Principal Strain Distributions at 20 Years (T=550C)
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Figure 4.9: Final maximum principal strain reached after 20 years for 100,000 Monte Carlo samples of the
posterior material distributions are compared to similar results given for the simplified pipemodel
in Figure 4.4. The y-axis for all pressures and temperatures remains the same. (a) In the top row
for T=550 ◦C, all pressures use the same x-axis. (b) In the bottom row for T=600 ◦C, the entire
strain range from 0 to the critical strain of 1% is used for all pressures because of the large final
strain distribution.

in some simulations to exceed 1%.
The final strain states from Figure 4.9 are then used to estimate a probability of failure at twenty years for a

critical principal strain of 1%. The PDF and CDF for the time to failure are shown in Figure 4.10 for T=600
◦C and two pressures; 1.75 and 2 MPa. The probability of failure at twenty years is given by evaluating the
CDF for reaching this strain criterion at twenty years. For T=600 ◦C, the failure probability for P=1.75 MPa
is 1×10−3 and for P=2 MPa is 1.8×10−2 and for P=2.5 MPa is 3.5×10−1. For P=3 MPa and T=600 ◦C,
the conditions used for the simulation presented in Figure 4.8, the probability of failure is 0.89, and it is not
surprising that the simulation using mean material properties reached 1% strain.
In Figure 4.11, the material properties that resulted in simulations with principal strains above 1% for P=2

MPa and T=600 ◦C are shown in blue compared to the entire distribution of material properties in green. As
was previously observed in the pipe model, lower values of n and b are seen to be most closely correlated with
the simulations that reach the critical principal strain. The low probability of failure and the small number
of samples for P=1.75 MPa and T=600 ◦C results in only about 100 simulations failing, resulting in a much
sparser, noisier distribution that that of the full set of samples. However, this distribution does show similar
trends to those observed in Figure 4.11. As for the simple pipe model, the other material properties do not
have a strong correlation with failure, even with the more complicated stress distribution in this model.
We do not observe any failed samples at any pressure for T=550 ◦C, so again we choose the same alter-

native critical strain criterion used in the pipe simulations as the top 1% of strain reached for all samples in
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a) b)

Figure 4.10: Probability density function (green histogram) and cumulative distribution functions (blue line)
for simulations in Figure 4.5 that reach a critical maximum principal strain of 1% at T=600 ◦C.

Input Parameters (T=600C, P=2MPa)

All Simulations

Simulations that 
reached 1% Strain

Q

Figure 4.11: Normalized histograms of input material parameters for all 100,000 samples in green and those
that failed within twenty years in blue at T=600 ◦C. The blue histogram contains 1797 samples.
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Figure 4.9. For this criterion, we plot the distributions of material properties leading to the top 1% of strain
in magenta in Figure 4.12 versus the original distributions of material properties in green. The distribution
of material properties leading to failure in Figure 4.12 are for P=2.5 MPa and are representative of the other
pressures simulated at T=550 ◦C. The material property distribution most closely correlated to high principal
strains for all pressures and temperatures with the NEML Grade 91 material model is n. We observed that b
only affects the strain at the higher temperature of T=600 ◦C. These observations were true for both models,
so the complexity of the strain distribution does not appear to make a difference.

Input Parameters (T=550C, P=2.5MPa)

All Simulations

Top 1% of Simulations 
with Highest Strain

Q

Figure 4.12: Normalized histograms of input material parameters for all 100,000 samples in green and the
top 1% of samples with the highest strain after twenty years in magenta at T=550 ◦C and P=2.5
MPa. Similar trends were observed for P=1.75, 2, and 3 MPa.

4.2 LAROMANCE Material Model Results

In this section, the LAROMANCE material model developed for Grade 91 is used to model the simplified
pipe and nozzle sphere shown in Figure 4.1 over a range of material inputs for initial cell and initial wall
dislocation densities and MX precipitate phase content. We use the same loading and boundary conditions
as used for the evaluation of the NEML Grade 91 material model in the previous section. For consistency
between the NEML and LAROMANCE Grade 91 material model simulations, the same initial elastic con-
stants given in Table 4.1 are used here. Truncated normal distributions are used to define the LAROMANCE
P91 input material parameters and are given in Table 4.3. Values defining these distributions were chosen to
span the range of the reduced order model’s applicability given in Table 3.2, except for the maximum MX
phase, which we limit to �MX = 0.02. The same distributions for initial material properties are used for both
temperatures; 550 ◦C and 600 ◦C. All of our simulations assume homogeneous material properties at the
sampled values for the entire model.

Table 4.3: LAROMANCE material property distributions from Table 3.2.
parameter (�,�) Bounds

Cell Dislocation Density (1012m−2) (4, 1) [1, 6]
Wall Dislocation Density (1012m−2) (12, 3) [6, 18]

MX Phase Fraction (�MX ) (0.012, 0.003) [0.006, 0.02]
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4.2.1 LAROMANCE Simplified Pipe Model Results

For the simplified pipe model, the maximum principal strain as a function of time is plotted in Figure 4.13
together with the dislocation density evolution for two different temperatures and MX phase contents, �MX .
From the large number of simulations completed for the following analysis, we found that the final strain
response was most sensitive to �MX . For these simulations we we selected values of �MX slightly lower
than the mean (�MX=0.008) and at at the upper cut-off in Table 4.3 (�MX=0.02). At the lower temperature
of T=550 ◦C, �MX has almost no effect on the strain evolution and only has a slight effect on the evolution of
the cell dislocation density. However at T=600 ◦C, the higher �MX value results in a larger principal strain
and a smaller decrease in cell dislocation density.
Increasing precipitate size can either increase or decrease creep lifetime in ductile metals [2]. Beneath

a critical precipitate size, increasing precipitate sizes have been observed to lower creep rates. Above the
critical precipitate size this trend reverses, and larger MX precipitates instead increase steady-state creep
rates. Chaturvedi and Han [2] referred to microstructures as under- or overaged in relation to this critical
precipitate size. Comeli et al. [3] found the middle of three annealing temperatures to result in the lowest
minimum creep rate in a CrMoV steel with precipitate content similar to that of P91. In general, these
precipitates act as obstacles to dislocation glide, typically reducing creep rates. At high temperature creep
conditions, dislocations must bypass precipitates via dislocation climb or by bowing out between obstacles.
As precipitate size increases, the bowing-out mechanism becomes more dominant. In addition, dislocation
annihilation occurs during dislocation creep, depleting dislocations during the transition from primary to
secondary creep. If dislocation annihilation is prevented during primary creep, a larger density of dislocations
would exist during secondary creep. The thermally assisted motion of more dislocations would in turn lead to
higher creep rates in the secondary creep regime. This is consistent with the creep rates in P92 steel observed
by Han et al. [4], for which the longest aging led to the highest steady-state creep rate and a reduced initial
creep rate.
In this section, we carry out an analysis similar to that completed for the NEML material model. Again,

we take 500,000 Monte Carlo samples over the range of input material properties provided in Table 4.3. The
final maximum principal strain from these samples is shown in Figure 4.14 for a simulation time of 20 years
at two temperatures; 550 ◦C and 600 ◦C, and at four pressures ranging from 5–7 MPa. These simulations
were run for either 20 years or until a critical strain level of 0.5% was reached. The LAROMANCE and
NEML material models are fit to very different types of experimental data, leading to different predicted
responses under similar loading conditions. Overall, the LAROMANCE model predicts lower strains with
less variability than the NEML model. For this reason, we reduced the critical strain measure from 1% to
0.5% in order to differentiate the samples that are more likely to fail first. Comparing Figure 4.14 (a) and
(b), we see that as temperature increases, so does the spread in total principal strain. We also note that as
pressure increases, at each temperature, the strain also increases. The critical strain cutoff value explains the
spikes in the failures at 0.5% strain in Figure 4.14 for T=600 ◦C and two pressures; 6.5 MPa and 7 MPa.
At the lower temperature and lower pressures, no simulations reach the critical strain level of 0.5%. To

analyze the effect of initial material properties on the resulting levels of strain, we again use an alternative
critical strain measure to filter our results. As was previously done, we define the alternative critical strain as
the top 1% of strains reached for all samples, and we plot the material properties leading to these high strains
in magenta in Figure 4.15. Figure 4.15 (a) shows that at 550 ◦C, maximum strain is strongly correlated with
a high initial dislocation content in the cells and a low obstacles content in the cell walls and precipitates.
In addition, as we had discussed, with increasing temperature the relative effect of precipitate strengthening
is more complex. Indeed, at 600 ◦C, shown in Figure 4.15 (b), an increase in precipitate content does not
necessarily reduce the maximum strain achieved. This is due to the fact that if the dislocations can easily
glide at the onset of loading they will annihilate much faster (this process is thermally activated) such that
as time passes, there will be fewer dislocations available to carry out plastic work, leading to a smaller total
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Figure 4.13: (a)Maximum principal strain and (b) cell and (c) wall dislocation density evolution as a function
of simulation time for two different temperatures and MX phase content.

strain than that reached with a higher initial precipitate content.
The annihilation of dislocations over the course of the simulation is shown by the two-orders-of-magnitude

reduction between the initial dislocation densities in Figure 4.15 and the final values in Figure 4.16. We
note that at T=600 ◦C in Figure 4.16 (b), the simulations reaching the highest strains are those with the
highest final cell dislocation densities. We did not see this same strong correlation between the initial cell
dislocation density and high strains in Figure 4.15 (b). This observation reinforces the fact that a higher
precipitate content inhibits dislocations from annihilating, making them available for creep deformation.
The large change in correlation between the initial and final dislocation density and high strains indicates
that the reduction in dislocation annihilation due to precipitates more than makes up for an initially low cell
dislocation density.

The final strain states from Figure 4.14 are also used to estimate a probability of failure at twenty years for
a critical strain of 0.5%. The probability density function and cumulative distribution function for the time
to failure are shown in Figure 4.17 for T=600 ◦C and two pressures; 6.5 MPa and 7 MPa. The probability of
failure at 20 years for P=6.5 MPa is 0.11 and for P=7 MPa it is 0.82.
To correlate failure of the model with the input material properties, we plot the distributions of input

parameters that lead to failure in blue in Figure 4.18 and compare them to the total distribution of input
parameters shown in green. We see that high values for �MX are most closely correlated with failure. Even
at P=7 MPa where almost 80% of samples failed, we see that a low �MX is correlated with those samples
that do not fail.
In Figure 4.18, the initial dislocations densities are not as strongly correlated to large strains as the precip-

itate content and it is difficult to tell what role it plays in this set of simulations. A stronger correlation may
have been achieved by holding the precipitate content constant and varying only the initial dislocation den-
sity. The final wall and cell dislocation densities in Figure 4.19 show the evolution of dislocations from their
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Figure 4.14: Final maximum principal strain reached after 20 years for 500,000 Monte Carlo samples of
the material distributions with in the range of properties the LAROMANCE model was fit for
temperatures (a) 550 ◦C and (b) 600 ◦C.

Input Parameters (T=550C, P=6MPa)

a) All Simulations
Top 1% of Simulations 
with Highest Strain

Input Parameters (T=600C, P=6MPa)

b)

Figure 4.15: Normalized histograms of input material parameters for all 500,000 samples in green and those
with the top 1% of strain in magenta for 6 MPa and temperature (a) 550 ◦C and (b) 600 ◦C.
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All Simulations Top 1% of Simulations with Highest Strain
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Input Parameters (T=600C, P=6MPa)
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Figure 4.16: Normalized histograms of the final wall and cell dislocation density evolution for all 500,000
samples in green and those with the top 1% of strain in magenta for 6 MPa and temperature (a)
550 ◦C and (b) 600 ◦C.

a) b)

Figure 4.17: Normalized probability density function (green histogram) and cumulative distribution func-
tions for simulations in Figure 4.14 that reach a critical maximum principal strain of 0.5% at
T=600 ◦C for pressures (a) 6.5 MPa and (b) 7 MPa.
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Input Parameters (T=600C, P=6.5MPa)
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reached 0.5% Strain

Figure 4.18: Normalized histograms of input material parameters for all 500,000 samples in green and those
that failed within twenty years in blue at T=600 ◦C. The blue histogram in (a) for P=6.5 MPa
contains 56,000 samples and (b) for P=7 MPa contains 390,000 samples.

initial distributions shown in Figure 4.18, where the blue distributions are from the samples that reached 0.5%
strain and the green distributions are for all of the samples. For every sample, the cell and wall dislocation
density are reduced by 2 orders of magnitude over 20 years for every pressure and temperature simulated.
As previously mentioned, the initial dislocation densities shown in Figure 4.18 are not strongly correlated
with a high strain; however, a higher final cell dislocation density is shown to be strongly correlated failure
and with a high �MX .

65



Input Parameters (T=600C, P=6.5MPa) Input Parameters (T=600C, P=7MPa)

All Simulations
Simulations that 
reached 0.5% Strain

a) b)

Figure 4.19: Normalized histograms of the final wall and cell dislocation density evolution for all 500,000
samples in green and those that failed within twenty years in blue at T=600 ◦C. The blue his-
togram in (a) contains 56,000 samples and (b) contains 390,000 samples.

4.2.2 LAROMANCE Sphere Nozzle Model Results

In this section the LAROMANCE Grade 91 material model is applied to the pressurized sphere nozzle
model from Figure 4.1. We observed the LAROMANCE model to be most sensitive to MX phase content
for the simplified pipe model in the previous section. This sensitivity was observed in the strain history in
Figure 4.13 as well as the histogram of material properties leading to a critical strain in Figure 4.17. In this
section we will use the same analysis procedure to determine the sensitivity of the sphere nozzle model to
input material properties and determine if the more complicated model follows the same trends observed in
the pipe model.
We begin by first plotting the evolution of maximum principal strain and dislocation densities over the

duration of a twenty year simulation for two temperatures, T=550 ◦C and 600 ◦C and twoMX phase contents,
�MX=8×10−3 and 20×10−3. We notice the same trend as previously observed in Figure 4.19: higher �MX
leads to larger strains at T=600 ◦C. At the lower temperature of T=550 ◦C, �MX does not have an effect on
the strain evolution as was also noted in the pipe model. The dislocation densities also evolve in a similar
manner to that observed for the pipe model, where the higher �MX leads to higher cell dislocation densities
and does not affect the density of wall dislocations.
The stress and strain distribution for the sphere nozzle model using the mean values of the material prop-

erties in Table 4.3 for T=600 ◦C are shown in Figure 4.21 with an applied internal pressure of 2 MPa. As
expected, the stress and strain are concentrated near the transition of the nozzle into the sphere. In the close-
up view of the transition region, we see that the maximum principal strain value occurs on the inner surface
near the corner while the maximum von Mises stress occurs at two locations on the inner and outer surface.
This is a much more complicated stress state than that created by the pipe model, where the maximum von
Mises stress is always at the inner surface and decreases monotonically through the thickness. The final
dislocation densities are plotted in Figure 4.22, and we see that the regions with the highest von Mises stress
have the lowest dislocation density. We also note that the contours for both dislocation densities are simi-
lar in appearance, although the cell dislocation density is over an order of magnitude smaller than the wall
dislocation density. This simulation was terminated after 11.9 years when the critical strain of 0.5% was
reached.
The LAROMANCE Grade 91 model, which has a unique ability to capture the temperature dependent

precipitate strengthening and dislocation evolution, comes at an increase in computational cost relative to
the NEML Grade 91 material model. Due to this increased run time, only 4800 samples of the sphere nozzle
model were simulated here. In Figure 4.23 we plot the final strain distributions at both temperatures at two
different pressures at each temperature. For T=550 ◦C we see no samples reaching 0.5% strain for P=2 MPa
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Figure 4.20: Maximum principal strain and dislocation density evolution as a function of simulation time
for two different temperatures and MX phase content. Both simulations at T=600 ◦ reach the
critical principal strain of 0.5% prior to 20 years for P=2 MPa. Plotted values are the maximum
elemental values found anywhere in the simulation at a particular time step.
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T=600C   P=2MPa   ɸMX=20e-3

a)

b)

Figure 4.21: Constant pressure simulation results at 2MPa and 600 ◦C for LAROMANCEGrade 91 for mean
dislocation density inputs (wall=12×1012m−2 cell=4×1012m−2) from Table 4.3 and a high MX
phase content (�MX=20×10−3). The results shown are for a simulation time of 11.9 years
at which point the maximum principal strain in one of the elements reached 0.5%. (a) Final
maximum principal strain contours on 20× displaced mesh, compared to the undeformed mesh
in gray. (b) Final von Mises stress contours. Inset shows a close up of the transition region.
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T=600C   P=2MPa   ɸMX=20e-3

a)

b)

Figure 4.22: Constant pressure simulation results at 2 MPa and 600 ◦C for LAROMANCE Grade 91 with
mean values for the initial dislocation density inputs (wall=12×10−12m−2 cell=4×10−12m−2)
from Table 4.3 and a high MX phase content (�MX=20×10−3). The results shown are for a
simulation time of 11.9 years at which point the maximum principal strain in one of the elements
reached 0.5%. (a) Cell and (b) wall final dislocation density contours. Inset shows a close up of
the transition region.
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while at 3 MPa we see 100% of samples reach the critical strain. We see a similar trend for T=600 ◦C, where
no samples fail at 1.5 MPa and 100% of the samples fail with a 0.5 MPa increase in pressure.

Final Maximum Principal Strain 
Distributions at 20 Years (T=550C)

Final Maximum Principal Strain 
Distributions at 20 Years (T=600C)
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Figure 4.23: Final maximum principal strain reached after 20 years for 4800 Monte Carlo samples of the
material distributions with in the range of properties the LAROMANCEmodel was fit. (a) Two
pressures at T=550 ◦C (b) Two pressures at T=600 ◦C

In Figure 4.24 we plot the probability density function and cumulative distribution functions for the two
samples that show 100% failure in Figure 4.23. For T=550 ◦C, there is a very tight distribution on the failure
time, with all 4800 samples failing within about a year of each other at about 16 years. At T=600 ◦C, the
distribution of failure time is broader. Some samples begin failing after 10 years and all of the samples have
failed in 20 years. These narrow failure distributions and narrow windows of pressures where failure goes
from 0 to 100% were not observed in the pipe model in the previous section.

a) b)

Figure 4.24: Probability density function (green histogram) and cumulative distribution functions for sim-
ulations in Figure 4.23 that reach a critical maximum principal strain of 0.5%. (a) T=550 ◦C,
P=3 MPa, (b) T=600 ◦C, P=2 MPa

We find that all of the samples reach more than 0.5% strain in 20 years. To establish correlations between
microstructure and deformation kinetics we adopt an alternate criterion for differentiating the samples that
are more likely to fail first. To do this, we consider the amount of time for the sample to reach the critical
strain of 0.5%. For this criterion, we find the first 1% of samples to fail for the pressures and temperature
shown in Figure 4.24. We have plotted the material distributions leading to the earliest 1% of failure times in
gold and compared this material distribution to the original distribution of material properties in green. It is
interesting to note that although this is the first observation of failure for T=550 ◦C, the material properties
leading to the critical strain measure are similar to those of the pipe model for T=550 ◦C in Figure 4.15. We
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see�MX has a negligible affect while a low initial wall dislocation density seems to bemost closely correlated
with earliest failure times. At the higher temperature of T=600 ◦C, we again see high �MX leading to higher
strains.

Input Parameters (T=550C, P=3MPa)

Input Parameters (T=600C, P=2MPa)

All Simulations

First 1% to reach 
critical strain

a)

b)

Figure 4.25: Normalized histograms of input material parameters for all 4800 samples in green and the ear-
liest 1% of simulations to reach the critical strain of 0.5% in Figure 4.24 shown in gold. (a)
T=550 ◦C, P=3 MPa. (b) T=600 ◦C, P=2 MPa

The evolution of dislocations in Figure 4.26 is similar to that observed previously for the pipe model and
shown in Figures 4.15 and 4.16. At T=550 ◦C, the lower initial wall dislocation density continues to evolve
to a lower than average final state. At T=600 ◦C, we again see a lower final cell dislocation density, and it is
unclear if the lower cell dislocation density is correlated with the higher �MX or with failure.

T=600C.  P=2MPa T=550C.  P=3MPa 

All Simulations First 1% to reach 
critical strain

a) b)

Figure 4.26: Normalized histograms of the final dislocation densities for all 4800 samples in green and the
earliest 1% of simulations to reach the critical strain of 0.5% in Figure 4.24 shown in gold.
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4.3 Discussion

We presented a statistical characterization of the NEML and LAROMANCE Grade 91 material models over
their ranges of applicability in two fairly straightforward applications. We performed these analyses for a
pressure range between 1–8MPa and two temperatures, 550 ◦C and 600 ◦C. The simplified pipe cross section
model provided a fast-running model that allowed us to test the bounds of the material distributions being
sampled and boundary conditions being applied. It also provided a rapid assessment of the sensitivity of the
strain to certain material inputs. The fast-running model uncovered the same material sensitivities as those
found in the more complicated sphere nozzle model. The more complicated sphere nozzle model provided a
test of robustness for both material models under realistic conditions of interest for engineering applications,
with more complex geometry, more refined meshes, and stress gradients in the nozzle transition region. The
two models robustly ran for over a million simulations for a range of input parameters sampled over their
fitted distributions.
We note that the NEML Grade 91 material model is a phenomenological model fit to macroscopic ex-

perimental data with a large variation in input parameters resulting in a large range of measured strains at
the end of the 20 year simulation. The LAROMANCE Grade 91 model is a reduced order model built up
from mesoscale simulations fit to microstructural data and resulted in a much smaller range of measured
strains over the twenty year simulation. These two Grade 91 material models are quantifying very different
effects. The NEML model predicted larger strain ranges due to the uncertainty in the model parameters as
they were fit to available experimental data. The strain range calculated by the LAROMANCE model is due
the variability in the initial microstructure and not on phenomenological model parameters.
Future component level modeling work should include:
• Importance sampling of statistical data to reduce the number of Monte Carlo samples required to

achieve statistically relevant failure probabilities. This will be important for cyclic loading scenarios
in both the NEML and LAROMANCE models.

• Variability of microstructure of the component model and its effect on the strain range calculated by
the LAROMANCE model.

• Reduced order and surrogate models of component-level response to reduce computational complexity
and simulation time.
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5 Summary and Future Work

This report summarizes the development and calibration of two complementary constitutive modeling ap-
proaches for the viscoplastic response of Grade 91 alloy in high temperature environments prototypical of
those that would be experienced in structural components of advanced reactors.

• Development of uncertain parameters for phenomenological NEML models (ANL) A Bayesian
approach was developed and used to derive distributions of uncertain parameters for a classical model
implemented in the NEML library based on a data set that included a wide range of treatments of
Grade 91 alloy.

• Development and parameterization of a reduced order (LAROMANCE) model (LANL) A re-
duced order model suitable for engineering-scale analysis that is based on the results of a large set of
mesoscale simulations of a subset of experimental data for a specific treatment of Grade 91 alloy. The
underlying mesoscale models allow the characteristics of a particular alloy to be taken into account,
while representing their response using a reduce order model allows for practical engineering-scale
simulations with reasonable computational expense.

• Stochastic engineering-scale simulations of component lifetime (INL) Both the NEML and LARO-
MANCEmodels have been integrated into the Grizzly code, and used for proof-of-concept uncertainty
quantification analyses of a simple component under prototypical conditions. The built-in stochastic
analysis capabilities in the MOOSE framework are used here to run large sets of simulations for this
uncertainty quantification analysis.

As would be expected, because the reduced order models are developed for a much more tightly defined
alloy, they predict tighter distributions of the time to failure than the phenomenological models, which are
calibrated to a broader set of data. Also important is that these simulations demonstrate that a reduced
order modeling approach can be successfully deployed to propagate uncertainties from the material scale to
practical engineering-scale component simulations.
Details of logical follow-on work have been provided in the individual sections of this report where they

were discussed. These tasks are summarized at a high level here:
• The NEML Grade 91 material model requires improvements for cyclic loading. These improvements

should include an improved representation of kinematic hardening in the plasticity models for cyclic
loading. The Bayesian MCMC method should also be improved to better fit experimental scatter.

• The LAROMANCE Grade 91 material models will provide a better estimate of the structure’s vari-
ability if the component geometry is stochastically seeded with randomize material properties.

• The LAROMANCE model does not yet include tertiary creep and damage. By basing the material
response on a spatially resolved microstructure model that includes these effects, this model can be
expanded to include those effects.

• This work has demonstrated the applicability of the LAROMANCE model under relatively narrow
conditions. The robustness of this constitutive modeling approach under a broader range of conditions
can be improved with further development.
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• Further development of the stochastic sampling tools used in Grizzly, including the use of more sophis-
ticated adaptive importance sampling, will permit accurate sampling in the tails of the distributions
with lower computational resource demands.

• The engineering scale analysis tools need further development to include the effects of damage.
• More realism is needed in the engineering-scale component models and in the failure criteria. This

study has demonstrated a reasonable proof of concept, but models that push the constitutive models
into more numerically challenging regimes will better demonstrate the robustness of this approach on
more representative real-life problems.
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